We saw in Example 5.4.2 that we sometimes need to apply integration
by parts several times in the course of a single calculation.

Example 5.4.4: For n > 0 let
Sp = / x"cos 2x dx.

Find an expression for S, in terms of S,,_», and hence evaluate S;.

— yhn dv _ du __ n—1 S P
Let u = x" and 3 = cos2x. Then 3= = nx"~" and v = 5 sin(2x).

Integrating by parts we have
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n

/x” cos2xdx = %sin(Zx) —

gx”‘1 sin2x dx

Xn—1

n

—~_sin(2
2sm( X) +

- / yx”_z cOS 2x dx

COS 2X

S

§ —1
X sin(2x) + M yn—1cos2x — nin—1)

2 4 5 o2

where the second equality follows using integration by parts with
u= gx”—‘ and % = sin2x. Thus we have found a formula for S, in
terms of S,_».

Andreas Fring (City University London) AS1051 Lecture 21-24 Autumn 2010 2/36



Clearly Sy = [ cos2x dx = }sin2x + C. Hence

S = X sin(2x) + gxcos 2X — 1 sin2x + C’

27 2 4 4
for some constant C’ and
4 4
S = sin(@x) + - x3 cos 2x

2 4

3 X sin(2x) + LR COS 2X — 1 sin2x + C’

2 2 4

- %(2)(4 — 6x° + 3)sin2x + %(2)(3 —3x)cos2x + C”

for some constant C”.
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In some examples integration by parts does not lead to a simpler
integral. However, even in these cases we can sometimes use this
method to solve the original problem.

Example 5.4.5: Calculate

/ e* cos x dx.
Let u = e¥ and & = cos x. Integrating by parts we obtain

/excosxdx:eXsinx—/eXsinxdx.
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Integrating by parts again we have
/e"cosxdx = e¥sinx — {—e"costr / eXcosxdx] :

The final integral is identical to that we first wished to calculate,
however we can now rearrange this formula to obtain

2/excosxdx: e“sinx +e*cosx+C

from which we deduce that

1 .
/e"cosxdx: E(exsmx+excosx+ C)
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5.5 The definite integral

then we define

a
which we also denote by
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Example 5.5.1:

49
/1(x+3)2dx -
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In the next example we will apply Example 5.2.3.

Example 5.5.2:

/2 sin*xcosxdx = [1 sin® x]
0 S 0
1

_0=

N[y

1
=

5
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When integrating a definite integral by substitution we must be careful
to convert the limits into the new variable.

Example 5.5.3: Calculate
2
/ V4 — x2dx.
0

Let x = 2sind, so & = 2cos ¢. We have
4 —x°>=4—4sin?0 = 4cos®d

and in changing variable we have

—
—

NS ©

0
0

x=0
X =2
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Combining these observations we obtain

2 ™
/ V4 — x2 dx :/22003920039d9
0

0

s

2
:/ 4 cos? 6 db
0

. /E 2(1 + cos 20) db
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Lecture 22
5.6 Integration as a measure of content

The area contained between the
curve y = f(x), the lines x = aand
x = b (for a < b) and the x-axis is

given by
b
/ f(x) dx.
a

y=f(x)
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This follows from the definition of integration as a measure:

n
f(x) area ~ Z F(Xk)O Xk
- k=1
and the fundamental theorem
of calculus which states that
X« this definition agrees with that

_Sx:_ coming from the antiderivative.

Note that this result relies on the convention that area below the x-axis
is negative. When calculating area we do not use this convention, so
the answer will have to be adjusted appropriately.
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So for

we have

/abf(x)dx:—/bcf(x)dx

although the total area is clearly non-zero.

If b < awe define

/ab f(x)dx = —/ba f(x) dx.

(This must clearly be the case from the definition of integration using
the antiderivative.)

Andreas Fring (City University London) AS1051 Lecture 21-24 Autumn 2010 13/36

Example 5.6.1: Find the area contained between the quadratic
y=3+2x - x*
and the x-axis.

We have y = (3 — x)(x + 1), and
from the graph we see that

3
area — / 34 2x — x2dx
-1 3 —1

3

3
= [3x+x2—x—] ==,
1

3
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Example 5.6.2: Find the area contained in the third arc of the curve

y = xsinx
for x > 0.
0 UT[
37
area = / X sin x dx (use integration by parts)
2m
37 3
= {—x COS X — /(— COS X) dx] = [—x COS X + sin x
2m 2w
= [(=37)(—1)+ 0] — [(—27)(1) + 0] = 5.
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Note that if the example had asked for the second and third arcs, we

would have calculated

37 2T
/ xsinxdx—/ X sin x dx.
2 T

™

Example 5.6.3: Find the area enclosed by the line y = 2x and the
curve

y =2x3 — 3x2.
Line and curve intersect when

ox3 — 3x% = 2x

i.e. when

x(2x+1)(x—2)=0.
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Let y; = 2x and y» = 2x3 — 3x2. Then

4 0
X s 2 3
ER Y

0
area A :ff’%yg—mdx :/ 2x3 — 3x%2 — 2x dx

N|—=

2

and

2
area B :f02y1—y2dx :/ —2x3 + 3x% 4+ 2x dx
0

x4 :
= -2+ x¥+x?| =4
2 0
Therefore the total areais A+ B = 121
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Lecture 23

6. Real functions Il

6.1 Inverse trigonometric functions

We would like to define the inverse of sin, cos, and tan, to be denoted
sin~', cos™ ', and tan".

Note: (i) For these to be functions we have to restrict the range.
(i) sin~! y does not mean (siny)~'. This is an unfortunate problem
with using sin” y = (sin y)". If n = —1 we must not do this!
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Function Domain Range Definition

y=sin"'x |x|<1 -I<y<Z x=siny
y=cos 'x |x]<1 0<y<m Xx=cosy
y=tan"'x R —Z<y<3 x=tany

Note that sin~" and tan~" are increasing, odd functions, while cos~! is
decreasing.

Sometimes we write arcsin x for sin~! x and similarly arccos x for
cos— ' x and arctan x for tan~" x.
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The graphs of these functions are:

y=sin"'0 y=cos 19

72
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y=tan"'6

12
_______________ T
. _ ein—1r1\; ; ; _ 1 T T
Example 6.1.1: o = sin™ '(5) implies that sina = 5 and -5 < o < 7.
Hence a = .
Andreas Fring (City University London) AS1051 Lecture 21-24 Autumn 2010 21/36

Example 6.1.2: Express sin(2cos™! x) in terms of x only.
Let y = cos™! x. Then

sin(2cos™"

X) =sin2y = 2sinycosy.
Now cos~! x = y gives cos y = x with 0 < y < 7, and

siny =1—cos?y =1 — x2.
Note thatsiny > 0as 0 < y <, and so

siny =+v1-—x2

Therefore

sin(2cos™! x) = 2xv/1 — x2.
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Proposition 6.1.3: We have for —1 < x < 1 that

Xx=2 _gin'x
=3 ,

cos !

Proof: Let y = sin™ x.

Then x = siny with -5 < y < %, and x = cos(5 — y) where
0 < 5 —y <. Therefore

1 1

. T s .
COs™ X =5 —y =5 —sinx.

2
O
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Proposition 6.1.4: We have
a+b
tan~'a+tan~' b =tan™’
+ <1 — ab) + pm
where
—1 if—r<tanTa+tan'b< -3
p= 0 if —F<tan'a+tan'b< 3
1 fZ<tan'a+tan 'b<
Proof: Leta =tan~'aand 3 =tan"' b, s0 - % < a,3 < % and
tana = aandtan g = b. We have
a+b tana +tan g
— = tan = tan n
1—ab 1-—-tanatang (a+5) (a+ 6+ nm)
(forallne Z)and —7 < o+ 8 < 7. Now tan~" (%) must lie
between —7 and 5, and equal o + 8 + nm, for some value of n. The
result now follows by inspection. ]
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Example 6.1.5: Find u such that

1

tan~! 3 +tan™! S tan~'u

4 12
Leta =tan™' 3 sotana_f;with IT<a<g. letg=tan' 3,
tan g = with T<pB<%. Clearly0 < a,3< F andso
0 < a+ 8 < 5. Hence by the last Proposition we have

3, 5
tan~" %Jr’[an‘1 % — tan~" (14+—125> — tan™! 56

Andreas Fring (City University London) AS1051 Lecture 21-24 Autumn 2010

Example 6.1.6: Simplify

1 —x
tan 'x+tan ' —=2
14+ x

for x > 0.

First suppose that 0 < x < 1,i.e 0 <tan~'x < 7- Then

1— i
= =-1+¢2andso0 < =X < 1;ie.
1—x =
0 <tan™' < -
- 1T+x 4

Hence for 0 < x < 1 we have

0<tan'x 4 tan™
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Now suppose that x > 1,i.e I < tan™"

~T <tan~' =X < 0. Hence for x > 1 we have

1+x

1+x
— T
O<tan 'x+tan ' —= < =,
1 2
Thus for all x > 0 we have
1—x 2
1—x X+ 1y X<+ 1
tan~! x +tan™’ — tan™" X | =—tan™" 5
1+ x 1_X(1—x) 1+ x
1+x
T
—tan" (1) = —.
(1) =7
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Lecture 24
6.2 Differentiation of inverse trigonometric functions

Let y = sin™' x. By definition x = siny with —Z <y < Z. We
differentiate with respect to x:

d_y_ 1
dx cosy’

d
cosyd—}; =1

2., a2 T s
Now cos“y =1 —sin“yand -5 <y < 5, hence

cos y = +1/1 —sin? y. Thus we have shown that

d 1
d—X(S|n
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Let y = cos™' x. Then cos™" x = § —sin™' x and hence

1
V1—x2

d
a(cos‘1 X) =

Finally let y = tan™" x. By definition x = tany with —% < y < Z. We
differentiate with respect to x:

dy

dy dy _ 1
dx

dx sec2y’

sec?y—~ =1 so

Now sec? y = 1 +tan® y and so sec? y = 1 + x2. Thus we have shown
that 1
1 X) —

d
- n_
X (ta

1+ x2
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Example 6.2.1: Differentiate sin™"(v/x).

o . 1 1
Let y = sin~" v with u = x2, s0 3 = Ix~2. Then

r_ T
du V1= 12
and
dy dydu 1 1 1

dx ~ dudx ~ /1 —x2\/§:2 x(1—x)

Example 6.2.2: Differentiate tan—1(2x 4 1).
Let y = tan="(2x + 1). Then

dy 2 B 2 B 1
dx 1+ (2x+1)2 4x24+4x+2 2x2+2x+1
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6.3 Integration and inverse trigonometric functions

First suppose that y = sin~'(x/a). Then

dy 1 L
dx 1_(5)2‘3_\/a2—x2'
a
Hence ’
gy —aint (X
/mdx_sm (a)+C.
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Next suppose that y = tan—'(x/a). Then

dy 1 1__a
dx 1+ (%)2'a a2 +x2

Hence ; ;
LN IR
/X2+a2dx_atan (a)+C.

We can now integrate rational functions with quadratic denominators.
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Example 6.3.1: Integrate

’
/x2+2x+5dx°

The denominator does not factorise, so we complete the square.

1 1 1 X+ 1
- dx = —tan™! C.
/x2+2x+5dx /(x+1)2+4 X~ 3 ( 5 >+
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Example 6.3.2: Integrate

/ X+ 3 dx
X2 4+2x+5

Note that & (x2 +2x +5) = 2x + 2. Thus

X+3 T2x+2)+2

— d

/x2+2x+5dx /x2+2x+5 *
1 2X + 2

’
S 2
2/x2+2x+5dx+ /(x+1)2+4dx

% In(x® + 2x + 5) +tan™" (%) + C.
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Example 6.3.3:

/ 1 ax = / 1 ax
2x2 4+ 2x + 1 N 2(x2 4+ x + 1)

= 1/ 1 dx
2) (x+ 30 +4

I
N =
PR
N~
o
3|
N
>
= 4
no|—
N~
_|_
O

= tan"'(2x+ 1)+ C.

(Compare with Ex 6.2.2.)
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We can also deal with more complicated rational functions by using
these methods together with partial fractions.

Finally, we consider the integrals of inverse trigonometric functions. To
integrate sin~! x we use integration by parts with v = sin~" x and
V = X.

. . X .
sin"'x=xsin"'x— | ———dx=xsin"'"x++v1—-x2+C.
/ /\/1—x2

Similarly

;
/tan_1x:x’[an_1x—/xz)_(|_1 dx = xtan™' x — Eln(x2+1)+ C.
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