
We saw in Example 5.4.2 that we sometimes need to apply integration
by parts several times in the course of a single calculation.

Example 5.4.4: For n ≥ 0 let

Sn =

∫
xn cos 2x dx .

Find an expression for Sn in terms of Sn−2, and hence evaluate S4.

Let u = xn and dv
dx = cos 2x . Then du

dx = nxn−1 and v = 1
2 sin(2x).

Integrating by parts we have
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∫
xn cos 2x dx =

xn

2
sin(2x)−

∫
n
2

xn−1 sin 2x dx

=
xn

2
sin(2x) +

n
4

xn−1 cos 2x

−
∫

n(n − 1)

4
xn−2 cos 2x dx

=
xn

2
sin(2x) +

n
4

xn−1 cos 2x − n(n − 1)

4
Sn−2

where the second equality follows using integration by parts with
u = n

2xn−1 and dv
dx = sin 2x . Thus we have found a formula for Sn in

terms of Sn−2.
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Clearly S0 =
∫

cos 2x dx = 1
2 sin 2x + C. Hence

S2 =
x2

2
sin(2x) +

2
4

x cos 2x − 1
4

sin 2x + C′

for some constant C′ and

S4 =
x4

2
sin(2x) +

4
4

x3 cos 2x

−3
(

x2

2
sin(2x) +

1
2

x cos 2x − 1
4

sin 2x + C′
)

=
1
4
(2x4 − 6x2 + 3) sin 2x +

1
2
(2x3 − 3x) cos 2x + C′′

for some constant C′′.
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In some examples integration by parts does not lead to a simpler
integral. However, even in these cases we can sometimes use this
method to solve the original problem.

Example 5.4.5: Calculate ∫
ex cos x dx .

Let u = ex and dv
dx = cos x . Integrating by parts we obtain∫

ex cos x dx = ex sin x −
∫

ex sin x dx .
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Integrating by parts again we have∫
ex cos x dx = ex sin x −

[
−ex cos x +

∫
ex cos x dx

]
.

The final integral is identical to that we first wished to calculate,
however we can now rearrange this formula to obtain

2
∫

ex cos x dx = ex sin x + ex cos x + C

from which we deduce that∫
ex cos x dx =

1
2
(ex sin x + ex cos x + C)
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5.5 The definite integral

If ∫
g(x) dx = G(x) + C

then we define ∫ b

a
g(x) dx = G(b)−G(a)

which we also denote by [
G(x)

]b

a
.
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Example 5.5.1:∫ 4

1

1
(x + 3)2 dx =

[
−1

x + 3

]4

1

= −1
7
−
(
−1

4

)
=

3
28.

Andreas Fring (City University London) AS1051 Lecture 21-24 Autumn 2010 7 / 36

In the next example we will apply Example 5.2.3.

Example 5.5.2: ∫ π
2

0
sin4 x cos x dx =

[
1
5

sin5 x
]π

2

0

=
1
5
− 0 =

1
5
.
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When integrating a definite integral by substitution we must be careful
to convert the limits into the new variable.

Example 5.5.3: Calculate ∫ 2

0

√
4− x2 dx .

Let x = 2 sin θ, so dx
dθ = 2 cos θ. We have

4− x2 = 4− 4 sin2 θ = 4 cos2 θ

and in changing variable we have

x = 0 −→ θ = 0
x = 2 −→ θ =

π

2
.
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Combining these observations we obtain∫ 2

0

√
4− x2 dx =

∫ π
2

0
2 cos θ 2 cos θ dθ

=

∫ π
2

0
4 cos2 θ dθ

=

∫ π
2

0
2(1 + cos 2θ) dθ

=

[
2
(
θ +

1
2

sin 2θ
)]π

2

0

= 2
[π

2
+ 0− 0− 0

]
= π.
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Lecture 22
5.6 Integration as a measure of content

a b

y=f(x)

The area contained between the
curve y = f (x), the lines x = a and
x = b (for a < b) and the x-axis is
given by ∫ b

a
f (x) dx .
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This follows from the definition of integration as a measure:

f(xk)

xk

xkδ

area ≈
n∑

k=1

f (xk )δxk

and the fundamental theorem
of calculus which states that
this definition agrees with that
coming from the antiderivative.

Note that this result relies on the convention that area below the x-axis
is negative. When calculating area we do not use this convention, so
the answer will have to be adjusted appropriately.
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So for

ba c

we have ∫ b

a
f (x) dx = −

∫ c

b
f (x) dx

although the total area is clearly non-zero.

If b < a we define ∫ b

a
f (x) dx = −

∫ a

b
f (x) dx .

(This must clearly be the case from the definition of integration using
the antiderivative.)
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Example 5.6.1: Find the area contained between the quadratic

y = 3 + 2x − x2

and the x-axis.

3−1

We have y = (3− x)(x + 1), and
from the graph we see that

area =

∫ 3

−1
3 + 2x − x2 dx

=

[
3x + x2 − x3

3

]3

−1
=

32
3
.
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Example 5.6.2: Find the area contained in the third arc of the curve

y = x sin x

for x ≥ 0.

0 π 2π 3π

area =

∫ 3π

2π
x sin x dx (use integration by parts)

=

[
−x cos x −

∫
(− cos x) dx

]3π

2π

=

[
−x cos x + sin x

]3π

2π

= [(−3π)(−1) + 0]− [(−2π)(1) + 0] = 5π.
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Note that if the example had asked for the second and third arcs, we
would have calculated∫ 3π

2π
x sin x dx −

∫ 2π

π
x sin x dx .

Example 5.6.3: Find the area enclosed by the line y = 2x and the
curve

y = 2x3 − 3x2.

Line and curve intersect when

2x3 − 3x2 = 2x

i.e. when

x(2x + 1)(x − 2) = 0.

2
−0.5

BA
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Let y1 = 2x and y2 = 2x3 − 3x2. Then

area A =
∫ 0
− 1

2
y2 − y1 dx =

∫ 0

− 1
2

2x3 − 3x2 − 2x dx

=

[
x4

2
− x3 − x2

]0

− 1
2

=
3

32
.

and

area B =
∫ 2

0 y1 − y2 dx =

∫ 2

0
−2x3 + 3x2 + 2x dx

=

[
−x4

2
+ x3 + x2

]2

0
= 4.

Therefore the total area is A + B = 131
32 .
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Lecture 23
6. Real functions II

6.1 Inverse trigonometric functions

We would like to define the inverse of sin, cos, and tan, to be denoted
sin−1, cos−1, and tan−1.

Note: (i) For these to be functions we have to restrict the range.
(ii) sin−1 y does not mean (sin y)−1. This is an unfortunate problem
with using sinn y = (sin y)n. If n = −1 we must not do this!
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Function Domain Range Definition
y = sin−1 x |x | ≤ 1 −π

2 ≤ y ≤ π
2 x = sin y

y = cos−1 x |x | ≤ 1 0 ≤ y ≤ π x = cos y
y = tan−1 x R −π

2 < y < π
2 x = tan y

Note that sin−1 and tan−1 are increasing, odd functions, while cos−1 is
decreasing.

Sometimes we write arcsin x for sin−1 x and similarly arccos x for
cos−1 x and arctan x for tan−1 x .
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The graphs of these functions are:

y = sin−1 θ

0 1−1

π/2

−π/2

y = cos−1 θ

0−1 1

π

π/2
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y = tan−1 θ

π/2

−π/2

Example 6.1.1: α = sin−1(1
2) implies that sinα = 1

2 and −π
2 ≤ α ≤

π
2 .

Hence α = π
6 .
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Example 6.1.2: Express sin(2 cos−1 x) in terms of x only.

Let y = cos−1 x . Then

sin(2 cos−1 x) = sin 2y = 2 sin y cos y .

Now cos−1 x = y gives cos y = x with 0 ≤ y ≤ π, and

sin2 y = 1− cos2 y = 1− x2.

Note that sin y ≥ 0 as 0 ≤ y ≤ π, and so

sin y =
√

1− x2.

Therefore
sin(2 cos−1 x) = 2x

√
1− x2.
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Proposition 6.1.3: We have for −1 ≤ x ≤ 1 that

cos−1 x =
π

2
− sin−1 x .

Proof: Let y = sin−1 x .
Then x = sin y with −π

2 ≤ y ≤ π
2 , and x = cos(π

2 − y) where
0 ≤ π

2 − y ≤ π. Therefore

cos−1 x =
π

2
− y =

π

2
− sin−1 x .

�
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Proposition 6.1.4: We have

tan−1 a + tan−1 b = tan−1
(

a + b
1− ab

)
+ pπ

where

p =


−1 if− π < tan−1 a + tan−1 b < −π

2
0 if − π

2 < tan−1 a + tan−1 b < π
2

1 if π
2 < tan−1 a + tan−1 b < π.

Proof: Let α = tan−1 a and β = tan−1 b, so −π
2 < α, β < π

2 and
tanα = a and tanβ = b. We have

a + b
1− ab

=
tanα+ tanβ

1− tanα tanβ
= tan(α+ β) = tan(α+ β + nπ)

(for all n ∈ Z) and −π < α+ β < π. Now tan−1
(

a+b
1−ab

)
must lie

between −π
2 and π

2 , and equal α+ β + nπ, for some value of n. The
result now follows by inspection. �
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Example 6.1.5: Find u such that

tan−1 3
4

+ tan−1 5
12

= tan−1 u.

Let α = tan−1 3
4 , so tanα = 3

4 with −π
2 < α < π

2 . Let β = tan−1 5
12 , so

tanβ = 5
12 with −π

2 < β < π
2 . Clearly 0 < α, β < π

4 and so
0 < α+ β < π

2 . Hence by the last Proposition we have

tan−1 3
4

+ tan−1 5
12

= tan−1

(
3
4 + 5

12

1− 3
4 .

5
12

)
= tan−1 56

33
.
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Example 6.1.6: Simplify

tan−1 x + tan−1 1− x
1 + x

for x ≥ 0.

First suppose that 0 ≤ x ≤ 1, i.e 0 ≤ tan−1 x ≤ π
4 . Then

1−x
1+x = −1 + 2

1+x and so 0 ≤ 1−x
1+x ≤ 1; i.e.

0 ≤ tan−1 1− x
1 + x

≤ π

4
.

Hence for 0 ≤ x ≤ 1 we have

0 ≤ tan−1 x + tan−1 1− x
1 + x

≤ π

2
.
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Now suppose that x > 1, i.e π
4 < tan−1 x < π

2 . Then −1 < 1−x
1+x < 0, so

−π
4 < tan−1 1−x

1+x < 0. Hence for x > 1 we have

0 < tan−1 x + tan−1 1− x
1 + x

<
π

2
.

Thus for all x ≥ 0 we have

tan−1 x + tan−1 1− x
1 + x

= tan−1

 x + 1−x
1+x

1− x
(

1−x
1+x

)
 = tan−1

(
x2 + 1
1 + x2

)
= tan−1(1) =

π

4
.
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Lecture 24
6.2 Differentiation of inverse trigonometric functions

Let y = sin−1 x . By definition x = sin y with −π
2 ≤ y ≤ π

2 . We
differentiate with respect to x :

cos y
dy
dx

= 1 so
dy
dx

=
1

cos y
.

Now cos2 y = 1− sin2 y and −π
2 ≤ y ≤ π

2 , hence

cos y = +

√
1− sin2 y . Thus we have shown that

d
dx

(sin−1 x) =
1√

1− x2
.
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Let y = cos−1 x . Then cos−1 x = π
2 − sin−1 x and hence

d
dx

(cos−1 x) =
−1√

1− x2
.

Finally let y = tan−1 x . By definition x = tan y with −π
2 < y < π

2 . We
differentiate with respect to x :

sec2 y
dy
dx

= 1 so
dy
dx

=
1

sec2 y
.

Now sec2 y = 1 + tan2 y and so sec2 y = 1 + x2. Thus we have shown
that

d
dx

(tan−1 x) =
1

1 + x2 .
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Example 6.2.1: Differentiate sin−1(
√

x).

Let y = sin−1 u with u = x
1
2 , so du

dx = 1
2x−

1
2 . Then

dy
du

=
1√

1− u2

and
dy
dx

=
dy
du

du
dx

=
1√

1− x
1

2
√

x
=

1
2
√

x(1− x)
.

Example 6.2.2: Differentiate tan−1(2x + 1).

Let y = tan−1(2x + 1). Then

dy
dx

=
2

1 + (2x + 1)2 =
2

4x2 + 4x + 2
=

1
2x2 + 2x + 1

.
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6.3 Integration and inverse trigonometric functions

First suppose that y = sin−1(x/a). Then

dy
dx

=
1√

1− (x
a )2

.
1
a

=
1√

a2 − x2
.

Hence ∫
1√

a2 − x2
dx = sin−1

(x
a

)
+ C.
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Next suppose that y = tan−1(x/a). Then

dy
dx

=
1

1 + ( x
a )2 .

1
a

=
a

a2 + x2 .

Hence ∫
1

x2 + a2 dx =
1
a

tan−1
(x

a

)
+ C.

We can now integrate rational functions with quadratic denominators.
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Example 6.3.1: Integrate ∫
1

x2 + 2x + 5
dx .

The denominator does not factorise, so we complete the square.∫
1

x2 + 2x + 5
dx =

∫
1

(x + 1)2 + 4
dx =

1
2

tan−1
(

x + 1
2

)
+ C.

Andreas Fring (City University London) AS1051 Lecture 21-24 Autumn 2010 33 / 36

Example 6.3.2: Integrate ∫
x + 3

x2 + 2x + 5
dx .

Note that d
dx (x2 + 2x + 5) = 2x + 2. Thus∫

x + 3
x2 + 2x + 5

dx =

∫ 1
2(2x + 2) + 2
x2 + 2x + 5

dx

=
1
2

∫
2x + 2

x2 + 2x + 5
dx + 2

∫
1

(x + 1)2 + 4
dx

=
1
2

ln(x2 + 2x + 5) + tan−1
(

x + 1
2

)
+ C.
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Example 6.3.3:∫
1

2x2 + 2x + 1
dx =

∫
1

2(x2 + x + 1
2)

dx

=
1
2

∫
1

(x + 1
2)2 + 1

4

dx

=
1
2

(
1
1
2

)
tan−1

(
x + 1

2
1
2

)
+ C

= tan−1(2x + 1) + C.

(Compare with Ex 6.2.2.)
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We can also deal with more complicated rational functions by using
these methods together with partial fractions.

Finally, we consider the integrals of inverse trigonometric functions. To
integrate sin−1 x we use integration by parts with u = sin−1 x and
v = x .∫

sin−1 x = x sin−1 x −
∫

x√
1− x2

dx = x sin−1 x +
√

1− x2 + C.

Similarly∫
tan−1 x = x tan−1 x −

∫
x

x2 + 1
dx = x tan−1 x − 1

2
ln(x2 + 1) + C.
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