
7. Calculus III: Limits

7.1 The limit of a function

We will give an informal definition of the limit of a function (a concept
which we have already used in this course). For a rigorous treatment
of this subject we would need a precise definition and lots of proofs,
but we will make do with an informal survey of the main results and
methods.

There will be a brief introduction to the formal definition of a limit at the
end of the Chapter.
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Informally, given a function f and a number c, the limit of f as x tends
to c, written limx→c f (x) is defined in the following way.

limx→c f (x) = L
if the values of f (x) are always arbitrarily close to L provided that x
is sufficiently close (but not equal) to c.
limx→c f (x) =∞
if for every given real R number, f (x) is always bigger than R,
provided that x is sufficiently close to c.
limx→c f (x) = −∞
is similar to the previous case, but replacing bigger by smaller.
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Example 7.1.1:
(a)

lim
x→0

1
x2 =∞.

(b)

lim
x→∞

1
x

= 0.

(c)
lim

x→∞

x
x + 1

= 1.

Warning: Not every limit exists!
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Example 7.1.2: (a)
lim

x→∞
sin x

does not exist as the function does not tend to a single value.

(b)

lim
x→0

(
1
x

)
does not exist as 1

x is very large in modulus and positive if x > 0 is very
small, and is very large in modulus and negative if x < 0 is very small.
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If the limits of f and g as x tends to c exist and are finite then we have:

lim
x→c

(f (x)± g(x)) = lim
x→c

f (x)± lim
x→c

g(x).

lim
x→c

(f (x)g(x)) =
(

lim
x→c

f (x)
)(

lim
x→c

g(x)
)
.

lim
x→c

(f (x)n) =
(

lim
x→c

f (x)
)n

for n ∈ N.

lim
x→c

(
f (x)

g(x)

)
=

(
limx→c f (x)

limx→c g(x)

)
provided that limx→c g(x) 6= 0.
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Example 7.1.3:

lim
x→2

(
(x + 1)(x + 2)4

)
= lim

x→2
(x + 1)

(
lim
x→2

(x + 2)

)2

= 3× 44 = 768.

Warning: We cannot use the above identities if the limits of f or g do
not exist, or are ±∞.

As Example 7.1.3 should suggest, if f is continuous at x = c then

lim
x→c

f (x) = f (c).

However, the usefulness of limits is that they can be used to
investigate the properties of functions near values where they may not
be defined. Looking at the asymptotes to a given function is also
related to considering limits.
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7.2 Limits of quotients of functions

A common situation where limits arise is the case where we quotient
one function by another, particularly if the denominator equals zero at
the point of interest. We have various methods for tackling such limits
(provided that they exist).

If f (c) and g(c) exist and g(c) 6= 0 then we saw above that

lim
x→c

(
f (x)

g(x)

)
=

f (c)

g(c)
.

Example 7.2.1:

lim
x→1

(
x2 + 2x + 3

x2 − 7

)
=

6
−6

= −1.
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If f (c) = g(c) = 0 and f and g are polynomials then we can try to
factorise.

Example 7.2.2: (a)

lim
x→1

(
x2 − 2x + 1
x2 − 3x + 2

)
= lim

x→1

(
(x − 1)(x − 1)

(x − 1)(x − 2)

)
=

0
−1

= 0.

(b)

lim
x→1

(
x3 − 1

x3 + 2x2 − x − 2

)
= lim

x→1

(
(x − 1)(x2 + x + 1)

(x − 1)(x2 + 3x + 2)

)
=

3
6

=
1
2
.
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Similar methods in reverse may work for other quotients.

Example 7.2.3:

lim
x→4

(√
x − 2

x − 4

)
= lim

x→4

(
(
√

x − 2)(
√

x + 2)

(x − 4)(
√

x + 2)

)
= lim

x→4

(
x − 4

(x − 4)(
√

x + 2)

)
= lim

x→4

(
1√

x + 2

)
=

1
4
.
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Lecture 30
For limx→0 and limx→∞ of a quotient of polynomials we have the
following methods. If we want limx→0(

f (x)
g(x)) we first simplify until one or

both of f and g has a constant term.

Example 7.2.4: (a)

lim
x→0

(
ax2 + bx + c
Ax2 + Bx + C

)
=

c
C

if C 6= 0.

(b)

lim
x→0

(
4x2 + 3x3 + x7

2x2 + x5

)
= lim

x→0

(
4 + 3x + x5

2 + x3

)
=

4
2

= 2

(c)

lim
x→0

(
3x2 + 4x3 + x4

x + x7

)
= lim

x→0

(
3x + 4x2 + x3

1 + x6

)
=

0
1

= 0.
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To determine limx→∞( f (x)
g(x)) for polynomials f and g we replace x by 1

y
and use limy→0.

Example 7.2.5:

lim
x→∞

(
3 + 4x + 2x2

5− x − 3x2

)
= lim

y→0

(
3 + 4/y + 2/y2

5− 1/y − 3/y2

)
= lim

y→0

(
3y2 + 4y + 2
5y2 − y − 3

)
= −2

3

We have one more general rule which can be applied to quotients of
arbitrary functions, called l’Hôpital’s rule: If f (c) = g(c) = 0 and
limx→c(

f ′(x)
g′(x)) exists then

lim
x→c

(
f (x)

g(x)

)
= lim

x→c

(
f ′(x)

g′(x)

)
.

This can also be applied to higher derivatives if f ′(c) = g′(c) = 0.
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Example 7.2.6: (a) Returning to example 7.2.2(b) we have

lim
x→1

(
x3 − 1

x3 + 2x2 − x − 2

)
= lim

x→1

(
3x2

3x2 + 4x − 1

)
=

3
6

=
1
2
.

(b)

lim
x→0

(
sin(x)

x

)
= lim

x→0

(
cos(x)

1

)
=

1
1

= 1.

This latter example is a standard limit, and should be learnt. Two other
standard limits:

lim
x→0

(xk ln x) = 0 for k > 0

lim
x→∞

(xke−x) = 0 for k > 0
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7.3 Convergent series and power series

We say that a sequence of numbers a1,a2, . . . ,an, . . . converges to the
number L if the terms in the sequence become arbitrarily close to L for
n sufficiently large. In this case we write

lim
n→∞

an = L.

For example the sequence 1, 1
2 ,

1
3 , . . . ,

1
n , . . . converges to 0 while the

sequence −1,1,−1,1, . . . , (−1)n, . . . does not converge. As before,
this rather vague definition can be made more precise.

Given a sequence of numbers a1,a2, . . . ,an, . . . we define the nth
partial sum Sn to be

Sn =
n∑

i=1

ai .

We say that the sum
∑∞

i=1 ai converges with sum S if limn→∞ Sn = S.
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Example 7.3.1: Consider the geometric series with initial value a and
constant ratio r . This has nth partial sum

Sn = a + ar + · · ·+ arn−1 =
a(rn − 1)

r − 1
.

The sum
∑∞

k=1 ar k−1 exists if limn→∞ Sn exists.

If |r | > 1 then |rn| gets larger and larger, so there is no limit. But if
|r | < 1 then rn tends to zero as n tends to infinity. Hence

lim
n→∞

(
a(rn − 1)

r − 1

)
=

a
1− r

if |r | < 1. If |r | = 1 then it can be shown that there is no limit.
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In summary, we have

∞∑
k=1

ar k−1 =

{ a
1−r if |r | < 1

does not exist if |r | ≥ 1.

This result must be known — usually it is remembered in the form

∞∑
k=0

xk =
1

1− x

provided that |x | < 1.

This is an example of a power series: an infinite sum of increasing
powers of a variable x . Typically such series converge for some values
of x but not for others. Next we will consider two special (and related)
power series: Taylor and Maclaurin series.
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7.4 Taylor series

Suppose that we have a function which can be differentiated at least n
times on some interval containing a point c. We might like to
approximate this function by a polynomial (because this is easier to
work with), at least in the region near to c.

So what whould be a good approximation to take? It is reasonable to
require that the approximation (which we will denote by pn(x)) should
agree with f (x) at the point x = c, and that the functions should have
the same first, second, . . ., nth derivatives at the point c. That is, that

p(i)
n (c) = f (i)(c)

for 0 ≤ i ≤ n.
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Consider the function

pn(x) = f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n.

Clearly pn(c) = f (c), and it is easy to check that

pn
(i)(c) = f (i)(c)

for 1 ≤ i ≤ n. Thus pn(x) approximates f (x) in the desired manner.

We define the Taylor series of f about c to be the infinite sum

T (f , c) =
∑
i≥0

f (i)(c)

i!
(x − c)i

where f (0)(x) = f (x) and 0! = 1. When c = 0 this is called the
Maclaurin series of f .

Andreas Fring (City University London) AS1051 Lecture 29-32 Autumn 2010 17 / 34

Lecture 31
Example 7.4.1: Find the Maclaurin series of f (x) = ex .

We have f ′(x) = ex = f ′′(x) = . . . for all x , and so f (n)(0) = 1 for all n.
Thus the Maclaurin series for ex is

1 + x +
x2

2!
+

x3

3!
+ · · ·

As yet we have no guarantee that the Taylor series for a given function
will actually converge to equal that function. Indeed, in general it will
not converge to the correct value at every value of x . In this course we
will not investigate the general problem of convergence, but instead
look at some important examples and state (without proof) when they
converge.
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The following examples should be memorised.

Function Series General term Converges
ex 1 + x + x2

2! + · · · xn

n! all x
sin x x − x3

3! + x5

5! −
x7

7! + · · · (−1)nx2n+1

(2n+1)! all x

cos x 1− x2

2! + x4

4! −
x6

6! + · · · (−1)nx2n

(2n)! all x

ln(1 + x) x − x2

2 + x3

3 −
x4

4 + · · · (−1)n+1xn

n −1 < x ≤ 1

Note that we could not give the expansion of ln x about zero in the
above list, but instead about one. Also, when using the formulas for
cos and sin we must use radians.
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We can also extend the binomial theorem for all real powers p:

(1 + x)p = 1 + px +
p(p − 1)

2!
x2 + · · ·+ p(p − 1) · · · (p + 1− n)

n!
xn + · · ·

for −1 < x < 1.

We can often get one power series by modifying another.

Example 7.4.2: Find a series for ln(2 + 3x) and state its region of
convergence.

ln(2 + 3x) = ln
(

2
(

1 +
3x
2

))
= ln 2 + ln

(
1 +

3x
2

)
.
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Using the sequence for ln(1 + u) with u = 3x
2 we have

ln(2 + 3x) = ln 2 +
∑
n≥1

(−1)n+1

n

(
3x
2

)n

.

This sequence converges when −1 < u ≤ 1, i.e. −2
3 < x ≤ 2

3 .

Example 7.4.3: Find a series for f (x) = cos2 x .

cos2 x = 1
2 + 1

2 cos 2x
= 1

2 + 1
2

[
1− (2x)2

2! + (2x)4

4! −
(2x)6

6! + · · ·
]

= 1− x2 + x4

3 −
2x6

45 + · · ·

valid for all x .
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We often use Taylor series methods to approximate functions close to
a value c by a polynomial.

Example 7.4.4: When x is small we have

sin x ≈ x and cos x ≈ 1− x2

2
.

These are known as the small angle approximations, and should be
known.
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Example 7.4.5: Express cosh x as a series of powers up to the term in
x6. Hence show that, near 0,

cosh x ≈ 1 +
x2

2
.

cosh x =
1
2
(ex + e−x)

=
1
2

(
1 + x +

x2

2!
+

x3

3!
+ · · ·+ 1− x +

(−x)2

2!
+

(−x)3

3!
+ · · ·

)
= 1 +

x2

2!
+

x4

4!
+

x6

6!
+ · · ·

for all real x . Near 0 the terms in x4 and higher contribute negligibly, so
we obtain the desired approximation.

Taking this approach to its logical conclusion we see that series
expansions are a useful tool for calculating limits of functions.

Andreas Fring (City University London) AS1051 Lecture 29-32 Autumn 2010 23 / 34

Example 7.4.6: Calculate

lim
x→0

(
sin x

x

)
.

We have

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

and so
sin x

x
= 1− x2

3!
+

x4

5!
− x6

7!
+ · · ·

Now

lim
x→0

(
sin x

x

)
= lim

x→0

(
1− x2

3!
+

x4

5!
− x6

7!
+ · · ·

)
= 1.
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Example 7.4.7: Calculate

lim
x→0

(
e2x − ex

x

)
.

We have

e2x − ex = 1 + 2x +
(2x)2

2!
+

(2x)3

3!
+ · · · −

(
1 + x +

x2

2!
+

x3

3!
+ · · ·

)
= x +

3x2

2!
+

7x3

3!
+ · · ·

and so

lim
x→0

(
e2x − ex

x

)
= lim

x→0

(
1 +

3x
2!

+
7x2

3!
+ · · ·

)
= 1.
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In all of the examples in this section we have concentrated on
Maclaurin’s series: the special case c = 0. This was just to make the
calculations easier to write down. For general values of c the methods
are the same.

Example 7.4.8: Obtain the Taylor’s expansion of x2 ln x in powers of
(x − 1) up to (x − 1)4.

Let f (x) = x2 ln x . Then we want

p4(x) = f (1) + f ′(1)(x − 1) +
f ′′(1)

2!
(x − 1)2 + · · ·+ f (4)(1)

4!
(x − 1)4.

You should check that this gives

(x − 1) +
3
2
(x − 1)2 +

1
3
(x − 1)3 − 1

12
(x − 1)4.
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Lecture 32
Sometimes it is useful to use the Leibnitz rule, which gives a formula
for the nth derivative of a product of functions.

dn

dxn (fg) =
dn

dxn (f )g+

(
n
1

)
dn−1

dxn−1 (f )
d

dx
(g)+

(
n
2

)
dn−2

dxn−2 (f )
d2

dx2 (g)+ · · ·

· · ·+
(

n
n − 1

)
d

dx
(f )

dn−1

dxn−1 (g) + f
dny
dxn (g).

So for example

d3

dx3 (fg) =
d3

dx3 (f )g + 3
d2

dx2 (f )
d

dx
(g) + 3

d
dx

(f )
d2

dx2 (g) + f
d3

dx3 (g).

As can be seen, this is very similar to the binomial theorem, and can
also be proved by induction (using the product rule).
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7.5 The formal definition of a limit

Our discussion of limits has been somewhat unsatisfactory, as we
have not had a rigorous definition of a limit to work with. In this section
we will briefly explain how to make this more precise. To give a
detailed examination of limits is beyond the scope of this module, so
we will restrict ourselves to the definition and some basic examples.
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We say that the limit of f as x tends to c is L, written

lim
x→c

f (x) = L

if for all ε > 0 there exists some δ > 0 such that |f (x)− L| < ε
whenever 0 < |x − c| < δ.

Roughly, this says that f (x) will always be as close to L as we like,
provided that we choose x to be sufficiently close to c.

Note that the choice of δ will depend on ε.

Sometimes this definition is explained as though we were playing a
game. One player chooses a positive number ε, and the second player
then has to choose a second positive number δ so that f (x) is always
within ε of L if x is within δ of c. If the second player can always do this,
then the function has limit L at c.
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For example, in the following picture Player 1 picks the horizontal strip
shown. Then Player 2 can pick the vertical strip as indicated to satisfy
the condition.

c
ε
ε

δ δ

If Player 1 chooses a narrower horizontal strip as in the next picture,
Player 2 can still choose a vertical strip as shown.
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For an example where the limit does not exist, consider the function in
the following figure.

Here we have indicated a horizontal strip for which no vertical strip will
ever guarantee that the curve between the vertical lines will always lie
inside the horizontal strip.

Thus this is an example where the limit condition is not satisfied.
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These pictures may help us to understand the definition, but they do
not help us to apply it. The best way to see how to do this is through
some examples.

Example 7.5.1: Show that

lim
x→3

2x = 6.

Here f (x) = 2x , c = 3, and L = 6. Given ε > 0, we must find δ > 0
such that

|f (x)− 6| < ε

whenever 0 < |x − 3| < δ. But if we choose δ = ε/2 then for all
0 < |x − 3| < δ we have

|f (x)− 6| = |2x − 6| = 2|x − 3| < 2δ = ε

as required.
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Example 7.5.2:

Show that
lim
x→3

x2 = 9.

Here f (x) = x2, c = 3 and L = 9. Given ε > 0, we must find δ > 0 such
that

|f (x)− 9| < ε

whenever 0 < |x − 3| < δ. It is now not as easy to see how to choose
δ.

First we suppose that we have picked δ, and see what happens to the
equations.
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If |x − 3| < δ then note that

|x + 3| = |x − 3 + 6| ≤ |x − 3|+ 6 ≤ δ + 6.

Therefore

|x2 − 9| = |(x − 3)||(x + 3)| ≤ δ(δ + 6) = δ2 + 6δ.

If ε ≥ 1 then we can choose δ = 0.1, and then

|x2 − 9| < 0.12 + 0.6 < ε

as required. If ε < 1 then ε2 < ε, and we can choose δ = ε
12 . Then

|x2 − 9| ≤ δ2 + 6δ ≤ ε2

144
+
ε

2
≤ ε( 1

144
+

1
2
) < ε

as required. Thus we have shown that limx→3 x2 = 9.
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