
8. Set theory and logic

8.1 Sets and elements

A set is a collection of objects. The objects are called elements of the
set. We write x ∈ A for x is an element of A, and x /∈ A for x is not an
element of A.

A set may be specified by listing its elements, e.g.

A = {1, 4, 7, 11}

or by stating a common property that defines the set, e.g.

the set of square numbers less than 100

or
{x ∈ N : x is prime}.
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Some important sets are N, Z, Q, and R.

A set with a finite number of elements is called finite, otherwise it is
called infinite.

If A and B are sets such that every element of A is also an element of
B then we say that A is a subset of B, and write A ⊆ B.

If A ⊆ B and B ⊆ A, i.e. A and B have exactly the same elements, we
say that A = B.

If A is not a subset of B we write A 6⊆ B.
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Example 8.1.1:
(a)

{1, 2, 3} ⊆ {1, 2, 3, 4}.

(b)
{1, 2, 3, 4} ⊆ {1, 2, 3, 4}.

(c)
{1, 2, {3, 4}} 6⊆ {1, 2, 3, 4}.

(d)
N ⊆ Z ⊆ Q ⊆ R.

The set with no elements is called the empty set, denoted by ∅.
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The set of all subsets of A is called the power set of A, written 2A. If A
is finite with n elements then 2A has 2n elements.

Example 8.1.2: The power set of

{a, b, {3, 4}}

is

{∅, {a}, {b}, {{3, 4}}, {a, b}, {a, {3, 4}}, {b, {3, 4}}, {a, b, {3, 4}}} .

If A ⊆ B and A 6= B then we may write A ⊂ B and call A a proper
subset of B. In Example 8.1.1 the inclusions in (a) and (d) are proper,
but not that in (b). The notation ⊆ and ⊂ is (deliberately) similar to ≤
and < for real numbers.
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We need to be little bit careful about which collections of objects we
call sets.

Example 8.1.3: (Russell’s paradox)
Suppose there exists a set Ω of all sets. Let

R = {A ∈ Ω : A /∈ A}.

That is, R is the set of all sets which are not elements of themselves.
Does R belong to R?

If R ∈ R then by definition R /∈ R !

If R /∈ R then by definition R ∈ R !

Thus R cannot exist.
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Thus we cannot have all of the sets which we might imagine: in
particular Ω and R cannot exist as sets.

To fix this we shall always assume that there is some fixed universe U
of which all of our other sets are subsets. So then R and Ω are not in
our universe U.

There are better (but more complicated) ways to avoid Russell’s
paradox, but this will suffice for our purposes.
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8.2 Set operations

There are various ways to form new sets from old.

The union A ∪ B of two sets is the set of elements x such that x ∈ A or
x ∈ B (including the possibility that x is in both). That is

A ∪ B = {x : x ∈ A or x ∈ B}.

The intersection A ∩ B of two sets is the set of elements x such that
x ∈ A and x ∈ B. That is

A ∩ B = {x : x ∈ A and x ∈ B}.
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The complement of B in A, A\B is the set of elements x ∈ A such that
x /∈ B. That is

A\B = {x : x ∈ A and x /∈ B}.

We denote by B′ the set
{x : x /∈ B}.

Example 8.2.1: Let A = {1, 3, 5, 7} and B = {2, 3, 4}.

A ∪ B = {1, 2, 3, 4, 5, 7},

A ∩ B = {3},

A\B = {1, 5, 7}.
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We can extend the notion of intersections and unions to collections of
many sets. If A1, A2, . . . , An are sets then we define

n⋃
i=1

Ai = {x : x ∈ Ai for some i}

and
n⋂

i=1

Ai = {x : x ∈ Ai for all i}.

We can even extend these definitions to infinite collections of sets.
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Lecture 34
8.3 Venn diagrams and membership tables

Venn diagrams are a means of visualising the relationship between
various sets. They are only a guide, and no substitute for a proper
proof!

We represent the universe U by a rectangle, and each set A, B by a
region in U. So

x

y

A
U

represents a set A, with x ∈ A and y /∈ A.
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In this way we can visualise ‘typical’ configurations of sets. Often we
shade the region of interest to us.

For example:

A B A B
UU

A ∪ B A ∩ B
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or:

A B A
UU

A\B A′

Venn diagrams may suggest identities which can then be verified by
other means.
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Example 8.1.1: Illustrate the sets

A ∪ (B ∩ C) and (A ∪ B) ∩ (A ∪ C).
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The shaded area on the left is the same as the double shaded area on
the right.

Once we have found a possible identity, we can use membership
tables to verify it.
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In a membership table we list all possible arrangements of elements in
our sets, with 1 denoting membership of a set, and 0 denoting
non-membership. For our basic operations we have

A B A ∪ B A ∩ B A\B A′

1 1 1 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 0 0 1

Two sets are identical if their entries in a membership table are
identical.
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Example 8.3.2: Prove that

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

A B C B ∩ C A ∪ (B ∩ C) A ∪ B A ∪ C (A ∪ B) ∩ (A ∪ C)

1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 0 0 0 1 1 1 1
0 1 1 1 1 1 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0

Columns 5 and 8 are identical, so the result is proved.
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8.4 Finite sets

If A is finite, let n(A) denote the number of elements in A. We have

n(A ∪ B) = n(A) + n(B)− n(A ∩ B)

and

n(A ∪ B ∪ C) = n(A) + n(B) + n(C)

−n(A ∩ B)− n(A ∩ C)− n(B ∩ C) + n(A ∩ B ∩ C).

These are examples of the inclusion-exclusion principle.
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Example 8.4.1: In a survey of the popularity of 3 supermarkets A, B,
and C, 100 people were interviewed.

30 used only A, 22 used only B, and 18 used only C.

8 used A and B, 9 used A and C, and 7 used B and C.

14 used none of the three.

The survey was poorly designed, so it is not known how many of the
people who shopped in a pair of supermarkets also shopped in the
third.

How many people used all three supermarkets, and how many used A
and C but not B?

Andreas Fring (City University London) AS1051 Lecture 33-36 Autumn 2010 17 / 40

Let m denote the number of people using all three supermarkets. We
can illustrate the information graphically as follows:

A B
m

9−m 7−m

C

18

30 22

14

8−m
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We have
n(A ∪ B ∪ C) = 100− 14 = 86.

Also,

86 = 30 + 22 + 18 + (8−m) + (7−m) + (9−m) + m = 94− 2m.

Therefore
n(A ∩ B ∩ C) = m = 4

and
n((A ∩ C)\B) = 9−m = 5.
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Lecture 35
8.5 Propositional logic

A proposition is a statement which is either true (T) or false (F).

Example 8.5.1: (a) “8 is an even number” is a true proposition.
(b) “The earth is flat” is a false proposition.
(c) “Stop writing!” is not a proposition
(d) “Are you hungry?” is not a proposition.
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We can make new propositions from old in various ways. We will
describe these using a truth table (similar to a membership table).

The negation of a proposition p, denoted ¬p, is the proposition given
by

p ¬p
T F
F T

So the negation of 8.5.1(a) is “8 is not an even number”.
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Given propositions p and q, we define the conjunction p ∧ q (“p and q”)
by

p q p ∧ q
T T T
T F F
F T F
F F F

The conjunction of 8.5.1(a) and (b) is “8 is an even number and the
earth is flat”.
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Given propositions p and q, we define the disjunction p∨ q (“p or q”) by

p q p ∨ q
T T T
T F T
F T T
F F F

The disjunction of 8.5.1(a) and (b) is “8 is an even number or the earth
is flat”.
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Given propositions p and q, we define the conditional p → q (“if p then
q”) by

p q p → q
T T T
T F F
F T T
F F T

If p equals 8.5.1(a) and q equals 8.5.1(b) then p → q is “If 8 is an
even number then the earth is flat”.
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Note that p → q is true whenever p is false. For example, if p is “I win
the election” and q is “I will give you a million pounds” then p → q is
“If I win the election then I will give you a million pounds”. If I lose the
election you would not accuse me of lying if I had promised this
(regardless of whether or not I give you any money)!

We say two propositions are equivalent if they have the same entries in
a truth table. We will give some of the most useful examples of
equivalent propositions.
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The first two examples are known as De Morgan’s Laws.

Example 8.5.2:
¬(p ∧ q) = (¬p) ∨ (¬q).

p q p ∧ q ¬(p ∧ q) ¬p (¬q) (¬p) ∨ (¬q)

T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

The fourth and seventh columns are equal, so the propositions are
equivalent.
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Example 8.5.3:
¬(p ∨ q) = (¬p) ∧ (¬q).

p q p ∨ q ¬(p ∨ q) ¬p (¬q) (¬p) ∧ (¬q)

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

The fourth and seventh columns are equal, so the propositions are
equivalent.
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Example 8.5.4:
¬(p → q) = p ∧ (¬q).

p q p → q ¬(p → q) (¬q) p ∧ (¬q)

T T T F F F
T F F T T T
F T T F F F
F F T F T F

The fourth and sixth columns are equal, so the propositions are
equivalent.

Andreas Fring (City University London) AS1051 Lecture 33-36 Autumn 2010 28 / 40



A proposition which is always true is called a tautology; one which is
always false is called a contradiction.

Example 8.5.5:
p ∨ (¬p)

is a tautology.

p ¬p p ∨ (¬p)

T F T
F T T

Andreas Fring (City University London) AS1051 Lecture 33-36 Autumn 2010 29 / 40

Lecture 36
There are two variants of p → q to which we give names. We call
q → p the converse of p → q, and (¬q)→ (¬p) the contrapositive.

Note that a conditional is not equivalent to its converse. For example
“If X has robbed a bank then X is a criminal”

is not equivalent to
“If X is a criminal then X has robbed a bank”

(e.g. as X might be a murderer). However
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Example 8.5.6: A conditional is equivalent to its contrapositive:

p → q = (¬q)→ (¬p).

To see this we consider the truth table

p q p → q ¬q ¬p (¬q)→ (¬p)

T T T F F T
T F F T F F
F T T F T T
F F T T T T

For example “If it is raining then I need an umbrella” is equivalent to “If
I do not need an umbrella then it is not raining”.

Finally, we write p ↔ q for (p → q) ∧ (q → p).
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8.6 Predicate logic

So far we have looked at propositional logic. There is a more general
kind of logic called predicate logic.

A predicate is either a proposition as before, or it is a statement of the
form

p(x1, x2, . . . , xn)

where each xi is a variable coming from some set Di , such that for
each choice of x1, . . . , xn the statement p(x1, . . . , xn) is a proposition.
This is a little bit complicated, so we will consider some examples.
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Example 8.6.1: (i) Let p(x) be “x is greater than 3”, where x ∈ Z.
Then p(2) is false, but p(4) is true.
(ii) Let q(x , y) be “x2 − y2 < 0” where x ∈ Z and y ∈ R.
Then q(1, 2) is “1− 4 < 0” which is true, while q(4,

√
3) is “16− 3 < 0”

which is false.

Thus a predicate can be regarded as a function which for every choice
of variables is either true or false.
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We can make new predicates from old using ∨, ∧, ¬, and→.

Example 8.6.2: (i) Let p(x) be “x > 2”, where x ∈ R and q(x) be
“x < 5”, where x ∈ R. Then p(x) ∧ q(x) is

“x > 2 and x < 5” with x ∈ R.
This is true for x = 3 and false for x = 1.
(ii) Let p and q be as in (i). Then p(x)→ q(x) is

“if x > 2 then x < 5” with x ∈ R.
If x = 3 then this is true, and if x = 6 then this is false.

Note that when we write e.g. p(x) ∧ q(x) we mean the same value for
x in p and in q. If we write p(x) ∧ q(y) then we can choose different
values for x and y (although they can still be the same if we so
choose).
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Predicates are a useful way to write down certain statements, but they
become much more useful in mathematics when combined with
quantifiers. There are two quantifiers which we shall use.

The universal quantifier, written ∀, corresponds to the English phrase
“for all" or “for each". If p(x) is a predicate with x ∈ D, then

(∀x)(p(x))

means “for all x ∈ D, p(x) is true".

The existential quantifier, written ∃, corresponds to the English phrase
“there exists" or “for some". If p(x) is a predicate with x ∈ D, then

(∃x)(p(x))

means “there exists x ∈ D such that p(x) is true".
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Example 8.6.3: Let h(x) mean “x is happy”, where x ranges over the
set of mathematicians. Then

(∀x)(h(x)) means “all mathematicians are happy”,
(∃x)(h(x)) means “there exists a happy mathematician”.

Suppose that a(x) means “x is an algebraist”, where x runs over the
set of mathematicians. Then (∀x)(a(x)h(x)) means

“for all mathematicians x, if x is an algebraist then x is happy”,
or put more simply, “all algebraists are happy”.
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By combining quantifiers, we can express quite complicated ideas.

Example 8.6.4: Let p(x , y) mean “x − y is an integer”, where x and y
are real numbers. Then

1 (∀x)(∀y)(p(x , y)) means “for all real numbers x and y, x − y is an
integer” which is false (e.g take x = 1 and y = 0.5).

2 (∃x)(∃y)(p(x , y)) means “there exist real numbers x and y such
that x − y is an integer” which is true (e.g take x = 1 and y = 0).

3 (∀x)(∃y)(p(x , y)) means “for all real numbers x there exists a real
number y such that x − y is an integer” which is true (e.g take
y = x − 1).

4 (∃y)(∀x)(p(x , y)) means “there exists a real number y such that
for all real numbers x we have that x − y is an integer” which is
false (e.g. we could take x = y − 0.5).

Note in particular the final pair of examples — the order in which we
write quantifiers is very important!
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Let us see how to write down some common mathematical phrases
using quantifiers. Let p(x) mean “x is an A” and q(x) mean “x is a B”,
where in each case x runs over some set D. Then “Every A is a B” can
be written

(∀x)(p(x)q(x)).

“No A is a B” can be written

(∀x)(p(x)(¬q(x))).

“Some As are Bs” can be written

(∃x)(p(x) ∧ q(x)).

“Some A is not a B” can be written

(∃x)(p(x) ∧ (¬q(x))).
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We have seen how to negate the various operations of proposition
logic (for “and” and “or” these identities were known as De Morgan’s
laws). We would also like to be able to negate a statement involving
quantifiers.

Suppose that p(x) is a predicate where x ranges over a set D. We
have

1 (∀x)(p(x)) meaning “all x have property p”.
2 (∃x)(¬p(x)) meaning “some x does not have property p”.
3 (∃x)(p(x)) meaning “some x has property p”.
4 (∀x)(¬p(x)) meaning “no x has property p”.

Now (2) is the denial of (1), and so

¬((∀x)(p(x))) is the same as (∃x)(¬p(x)).

Also (4) is the denial of (3), and so

¬((∃x)(p(x))) is the same as (∀x)(¬p(x)).
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Example 8.6.5: (i) If p(x) means “x is positive” where x ∈ Z, then
¬((∀x)(p(x))) means

“not all integers are positive”,
which is the same as saying

“there exists an integer which is not positive”,
i.e. (∃x)(¬p(x)).

(ii) Similarly, if q(x) means “x is even” where x runs over the set of
prime numbers then ¬((∃x)(q(x))) means

“there does not exist an even prime number”,
which is the same as saying

“all prime numbers are odd”,
i.e. (∀x)(¬q(x)).
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