1.7 Sums of series
We often want to sum a series of terms, for example when we look at
polynomials. As we already saw, we abbreviate a sum of the form

.
Utz +-+u by Y
i=1

For example

n
anX"+ap_ X"t ax+a =) ax
iz

and

Andreas Fring (City University London) AS1051 Lecture 5-8 Autumn 2010 1/35

We can also sum certain series of powers of consecutive integers:

n

. n(n+1)
"o n(n+1)(2n+1)

z": 3 m(n+1)2
o= =T
i 4
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Example 1.7.2: Find the sum S, of the squares of the first n even
integers greater than zero.

Sy = 22442 4+...4(2n)?
n n n
= D (2kPE=) 4KE=4> K
k=1 k=1 k=1

= %n(n+ 1)(2n+1).
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Let Dy be the domain of f, with codomain C; and range R;. We write
this as
f:Df—>Cf or f:X»—»f(X)

where x € Dy (and f(x) € Cy). This has the advantage over the form
f(x) = --- that we do not need to give an explicit formula for f, which is
useful when we talk in general terms.

Example 2.1.1: Let f(x) = x® with x € R.

This has domain R, i.e. —o0o < x < oo, and range the set of y with
y=>0.

Example 2.1.2: Take f as in the preceding example, but with
-1 <x<2.

This has domain —1 < x <2andrange 0 < y < 4.
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Suppose that u; = a+ (i — 1)d, so that u; with i > 1 form an arithmetic
progression (AP) with initial value a and common difference d. Then

Yiu =a+(a+d)+--+(a+(n-1)d)
=na+d+2d+---+(n—-1)d
= na+d™0N — In2a+ (n—1)d).

Next suppose that u; = ar’~", so that u; with i > 1 form a geometric
progression (GP) with initial value a and common ratio r. Then
ifr=1

Xn: ui=a+ar+---+ar"" na
i = = a(l-r"
= ifr#1

i=1

(To verify the second case, rearrange the expression for 17 — r" given
in Section 1.5. of lecture 3)
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Example 1.7.1: The fourth term in a geometric progression is 7 and
the seventh is 4. Find the sum S;g of the first eighteen terms.

We have us = ar® = 7 and uy = ar® = 4. Therefore

at 4 e ()
ar377anso —7 .

Substituting into the expression for us we deduce that a = %9. Then
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2. Real functions of one variable
2.1 General definitions

A real function is a rule that assigns to each real number in some set
another real number, in a unique fashion. The set of inputs is called
the domain of the function, and the set of outputs is called the range or
image.

Usually we talk about a function going from one set to another without
guaranteeing that every value in the latter set occurs as an output of
the function. We refer to such a target set as the codomain. Thus the
range is a subset of the codomain.
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The graph of a function is the set {(x, y) : ¥ = f(x), x € Ds} whichis a
subset of the plane R2. We often represent this graphically.

Example 2.1.3: The graph for Example 2.1.2is {(x,x?) : =1 < x <2}
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lecture 6
If the domain of a function is not specified, we assume that it is the
largest set of real numbers on which the function is defined.

Example 2.1.4: Specify the domain and range of f(x) = ﬁ
Domain: Any real number except 2.

Range: We need to solve y = ;15.

This is not possible if y = 0.

If y # 0 then

1:)(—2 and x:2+1,
y y

Therefore the range is all real numbers
except zero.
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A function f is one-to-one (1—1) or injective if x # y implies that
f(x) # 1(y)-

Example 2.1.6: f(x) = x + 1 with x € R is injective as if f(x) = f(y)
then
X+1=y+1 S0 xX=y.

f(x) = x2 with x € R is not injective, as f(2) = f(—2).

An injective function f has an inverse f~'. For each b in the image of f,
we set f~1(b) to be the unique element a in the domain of f such that
f(a) = b. So Dy—+ = Ry and Ry = Dy. Also

fof'(x)=x and 1o f(x) = x.
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Example 2.1.7: Let f(x) = 54 =1 — 2y for x # —1.
Set y = f(x), so

(x+1Ny=x-1.
Rearranging we get that
1+y
X =
1-y
and hence f~"(x) = 1% with x # 1.
Check:
1+x 1 _
fof’%x):}li _1+x H—X:Z—X:x.
X4+ 1T+x+1-x 2
Try also £~ o f(x).

2.2 Special functions

We have already considered certain special classes of functions:
polynomials, and rational functions. Here are a few more.

The square root function f(x) = v/x where x > 0. (Recall that we have
already defined this function in Section 1.2.)

Example 2.2.1: Find the domain and range of v'x2 — 2x — 3.
Sety = h(x)=vVx2-2x-3=

f o g(x) where

9(x) =x® —2x -3 and

f(x) = Vx.

The domain is x> — 2x — 3 > 0, -1 3
ie. (x+1)(x—3)>0.

Sox>3orx<—1.

Therangeis y > 0.
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The composition of two functions f and g, written f o g, or just fg, is the
function defined by

(fog)(x) = f(g(x)).
This only makes sense if g(x) is contained in the domain of f, so the
domain of f o g is the set of all x € Dy such that g(x) € Dy.

Example 2.1.5: Let f(x) = 3x2 — 2x + x~" with x # 0 and
g(x) =2x + 1 with x € R.

1

(fog)(x):f(2x+1):3(2X+1)272(2X+1)+m

which has domain x # —41.

(goH(x)=g(Bx% —2x +x 1) =2(3x% —2x + x ") +1

which has domain x # 0.
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The graph of f~1 is the reflection of the graph of f in the line y = x.
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Note that it is not possible to talk about the inverse of a non-injective
function. For example, consider f(x) = x? with x € R. If f~"(4) exists,
isit2or—2?

However, f(x) = x2 with x > 0 does have an inverse: f~'(x) = V/x.
This is one reason why we may restrict the domain of a function.
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x ifx>0

The modulus function f(x) = |x| = { x ifx<0

Example 2.2.2: Sketch the graph of f(x) = [x2 — 2x — 3|.

X2 —2x -3 ifx< -1
f(x) =< —x®2+2x+3 if —1<x<3
X2 —2x—3 ifx>3.

—1‘ 3
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Example 2.2.3: Solve |x — 3| = 2x.

2X

[x-3

3

From the graph we see that the solution occurs when x < 3. Therefore

we need
3—x=2x

with x < 3,i.e. x =1.
We could also solve x — 3 = 2x, which gives x = —3. However, this

does not make sense in [x — 3| = 2x and we therefore have to discard

this solution.
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The graphs of these functions are:
y =sinf

[N
N
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A function is periodic of period t if
f(x +t) = f(x)

for all x € Dr and t is the least positive number for which this occurs.
A function is even if

17/35

19/35

f(=x) = f(x)
for all x € Dy and odd if

f(=x) = =1(x)
for all x € Dy.

You must memorise the following values:

0 £z I © x
6 4 3 2
sing 0 \%[ & & 1
3 1 1
cosf 1 % - 3 0
tang 0 S 1 V3 -

You must also know all of the following identities:

sin(x) = cos (g - x) cot(x) = tan (g - x)
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lecture 7

2.3 Trigonometric functions

We define
sinf=b cosf=a
for 6 € R, and
b

tand =

7 for some

~— N

forg e Rwith 0 # (n+ 3
nez.
Note:
(i) tang = Y.
(i) We use radians for angles. 2 radians equals 360 degrees.
(iii) Positive angles are measured anticlockwise.

cos?x +sin’x =1
cot?x + 1 =cosec®x
1 +tan?x =sec?x

sin(x + y) = sinxcos y + cos xsiny
cos(x + y) =cosxcosy —sinxsiny

__ tanx+tany
tan(x +¥) = gnxeany

(From these you can work out sin(x — y) etc.)
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y =tanf
We define
cosec = ! secl = ! cotf = !
" sing ~ cosf " tang
wherever these functions are defined, and set cot 7 = 0.
Here is a summary of the basic properties of trigonometric functions
Function Domain Range Period Zeros  Odd/Even

sin R yl <1 2« nm o

cos R yl<1 2r (37 E

tan  0# (27 R T nm o]

cosec 0 # nm ly|>1 2r - o
2n+1
sec  0# (& )n |y|>1 2r - E
cot 0 # nm R T (B« o]
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Special cases of these last equations which should also be known are:

sin(2x) = 2sin x cos x
cos(2x) = cos? x — sin® x

tan(2x) = 2222

You should also know:
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Example 2.3.1: Express sin 36 in terms of sin 6.

sin30 = sin(6 + 20)
= sinfcos 26 + cos§sin 20
= sinf(cos?d — sin® @) + 2cos A sin A cos §
= 3sinfcos?d —sin®0
= 3sind(1 —sin?0) —sin®9

= 3sinf —4sin3¢
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In summary, the general solutions (which are to be memorised) in
terms of a particular solution 6 are:

sin 0+2nmorm—60+2ntr withneZ
cos +60+2nmw withneZ
tan 6+ nm withneZ

Example 2.3.2: Find the general solution to cos § = ﬁ

One solution is 6 = %, so the general solution is

6::t§+2n7rwithneZ.
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Example 2.3.4: Solve 2c0s?20 —sin20 = 1 for 0 < § < 2.
2c0s?20 —sin20 — 1 = 2(1 — sin? 20) — sin20 — 1
and so we require
(2sin26 — 1)(sin26 +1) = 0.

This has solutions sin26 = % and —1. We want 0 < 20 < 4r. For
sin20 = } have

7 57 137 17«
#=%% 6 6
and for sin26 = —1 have
3 7n
W=7

Therefore
7 57 137 17 3r 7

12’127 127127 47 4~

This last pair of equations can be derived from the preceding sets. For
example, letx=p+qgand y =p—q. Then

sinx + siny = sin(p + q) + sin(p — q).
The righthand side equals

sinpcos g + cos psing
—cospsing +sinpcosq

which equals

2sinpcos g = 2sin <X2j> cos (%) .
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lecture 8
When solving any trigonometric equation, we ultimately reduce this to
solving some equation of the form

f(0)=a
where f is a trigonometric function such as cos, sin, or tan. Thus we
must know the general solution to such equations.

As the functions are periodic of period 27 (respectively ) for cos and
sin (respectively tan), it is enough to find all solutions in some 27
period (respectively = period).

For sin, if 6 is a solution then so is = — 6.

For cos if 6 is a solution then so is —6.

Tan is injective on the domain —7 < 6 < 7, so has only one solution in
each period.
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Example 2.3.3: Find all solutions to sin260 = —? with —7 < 6 < 3.

One solution is 20 = —7, and so the general solution is

29:7%+2n7r or 29:4%+2n7r with n € Z.

Therefore
T 47 .
0=_E+mr or 0=€+n7r with n € Z.

In the required range 6 takes the values

7T57T117Tﬂ T 27 57 8w

"6 6’ 6 6 3 3 33"
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A function of the form acos 6 + bsin ¢ can be rewritten in either of the
forms Rcos(¢ — a) or Rsin(# + ) for suitable choices of R > 0 and
—% < a < 5. Suppose

acosf+ bsind = Rcos(f — )
= Rcosfcosa+ Rsinfsina.

Comparing coefficients we have
a=Rcosa and b=Rsina.

Therefore
R?(cos? o + sin?a) = R? = & + b?

and so R = Va2 + b2. Then

Rsina b
=tana = —
Rcosa a
a1 (b
and so a =tan~" (2).
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Similarly

acosf + bsind = /a2 + b2sin (9 +tan™’ (%)) .

Example 2.3.5: Find the general solution of the equation

V3cosx +sinx = 1.

Let vV3cos x + sinx = Rcos(x —a) with R > 0and —% < a < 5. By

the above we have

1
R=v1+3 and tana=-—
RV

which implies that R = 2 and a = §. Thus we have to solve
™
2cos (x— E) =1.
This has general solution

xfgzi-gjthr with n e Z.
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This method works when both sides of the equation involve the same

function. Sometimes we will have to first rearrange to ensure this.
Example 2.3.6: Find the general solution of cos 20 = sin 6.
sind = cos(% — ¢) and so cos(20) = cos(3 — 6). Therefore

™ .
20:2n7ri<§70) with n € Z.
Rearranging, we find that
0:2%+% or 0:2n7rfg with n € Z.
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There is a simple method for solving an equation of the form
cos af = cos bf.

By the general form of the solution to cos we must have

af = 2nm + bl
and so 5
nm .
Hfaib with n € Z.

Similar results hold for
sin af = sin b

and
tan af = tan bé.
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