1.7 Sums of series

We often want to sum a series of terms, for example when we look at
polynomials. As we already saw, we abbreviate a sum of the form

,
U+ U+ + U by > u
i=1
For example

n
anx" + a,,_1x”_1 + -+ a1X+ay = Za,-x’

i=0
and
" /n
n n—i pi
(a+ b)" = E ( ) b'.
- I
i=0
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Suppose that u; = a+ (i — 1)d, so that u; with i > 1 form an arithmetic
progression (AP) with initial value a and common difference d. Then

STiu =a+(a+d)+---+(@a+(n—1)d)
—na+d+2d+---+(n—1)d
— na+d2%) — In2a+ (n—1)d).

N

Next suppose that u; = ar'~', so that u; with i > 1 form a geometric
progression (GP) with initial value a and common ratio r. Then

Zn:u a+ar+---+ar"’ o tr=1
— A=) it r£1.

(To verify the second case, rearrange the expression for 17 — r" given
in Section 1.5. of lecture 3)
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We can also sum certain series of powers of consecutive integers:

z”:i _n(n+1)
; B 2
i=1

~p _ n(n+1)@n+1)

6

zn: i3 _ n2(n + 1)2
: N 4
i=1
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Example 1.7.1: The fourth term in a geometric progression is 7 and
the seventh is 4. Find the sum S;g of the first eighteen terms.

We have uy = ar® = 7 and uy = ar® = 4. Therefore

ar® 4 ; r— 4 3
ar3—7 and So = 7 .

Substituting into the expression for us we deduce that a = %. Then

e (D (D

NN

Andreas Fring (City University London) AS1051 Lecture 5-8 Autumn 2010 4/35



Example 1.7.2: Find the sum S, of the squares of the first n even
integers greater than zero.

Sy = 224+4%4...4(2n)
n n
= ) (2k)? = Z4k2 4> K
k=1 k=1

= gn(n+ 1)(2n+1).
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2. Real functions of one variable
2.1 General definitions

A real function is a rule that assigns to each real number in some set
another real number, in a unique fashion. The set of inputs is called

the domain of the function, and the set of outputs is called the range or
image.

Usually we talk about a function going from one set to another without
guaranteeing that every value in the latter set occurs as an output of

the function. We refer to such a target set as the codomain. Thus the
range is a subset of the codomain.
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Let D be the domain of f, with codomain C; and range R;. We write

this as
f:Df — Cf or f:x+— f(x)

where x € Dy (and f(x) € Cy). This has the advantage over the form
f(x) = --- that we do not need to give an explicit formula for f, which is
useful when we talk in general terms.

Example 2.1.1: Let f(x) = x? with x € R.

This has domain R, i.e. —oco < X < oo, and range the set of y with
y > 0.

Example 2.1.2: Take f as in the preceding example, but with
—1 < x<2.

This has domain —1 < x <2 andrange 0 < y < 4.
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The graph of a function is the set {(x, y) : y = f(x), x € D¢} which is a
subset of the plane R?. We often represent this graphically.

Example 2.1.3: The graph for Example 2.1.2is {(x, x?) : =1 < x < 2}
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lecture 6
If the domain of a function is not specified, we assume that it is the
largest set of real numbers on which the function is defined.

Example 2.1.4: Specify the domain and range of f(x) = ﬁ

Domain: Any real number except 2.
Range: We need to solve y = 1.
This is not possible if y = 0.

If y + 0 then

|
|
|
|
|
1 N
—=x-2 and X=2+ —. \:
y y .

Therefore the range is all real numbers
except zero.
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The composition of two functions f and g, written f o g, or just fg, is the
function defined by

(fog)(x) = f(g(x))-

This only makes sense if g(x) is contained in the domain of f, so the
domain of f o g is the set of all x € Dy such that g(x) € Ds.

Example 2.1.5: Let f(x) = 3x? — 2x + x~ ! with x # 0 and
g(x) = 2x + 1 with x € R.

(fog)(x)=f(2x +1) =3(2x +1)2 —2(2x + 1) +

2x + 1

which has domain x # —3.

(gof)(x)=g(Bx® —2x+x 1) =2(8x%> —2x + x ) + 1

which has domain x # 0.
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A function f is one-to-one (1—1) or injective if x # y implies that
f(x) # f(y).
Example 2.1.6: f(x) = x + 1 with x € R is injective as if f(x) = f(y)
then

X+1=y+1 SO X=y.
f(x) = x2 with x € R is not injective, as f(2) = f(—2).

An injective function f has an inverse f~!. For each b in the image of f,
we set ~1(b) to be the unique element a in the domain of f such that
f(a) = b. So D;—+ = Ry and R;—+ = Dy. Also

fof 1(x)=x  and f~1o f(x) = x.

Andreas Fring (City University London) AS1051 Lecture 5-8 Autumn 2010 11/35

The graph of f~1 is the reflection of the graph of f in the line y = x.

Andreas Fring (City University London) AS1051 Lecture 5-8 Autumn 2010 12/35



Example 2.1.7: Let f(x) = X1 =1 - _2

a for x # —1.
Set y = f(x), so

X+1

(x+1)y=x-1.

Rearranging we get that

1
X = Yy
1T-y
and hence f~'(x) = 32X with x # 1.
Check:
14+x
- | 1+x—-1+4+x 2x
fof™'(x) =12 il T = X.
X1 THx+1-x 2
Try also =1 o f(x).
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Note that it is not possible to talk about the inverse of a non-injective
function. For example, consider f(x) = x? with x € R. If f~1(4) exists,
is it 2 or —27

However, f(x) = x2 with x > 0 does have an inverse: f~1(x) = v/x.
This is one reason why we may restrict the domain of a function.
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2.2 Special functions
We have already considered certain special classes of functions:
polynomials, and rational functions. Here are a few more.

The square root function f(x) = v/x where x > 0. (Recall that we have
already defined this function in Section 1.2.)

Example 2.2.1: Find the domain and range of v/x2 — 2x — 3.
Sety = h(x)=vVx2-2x -3 =

fo g(x) where

g(x) = x2 —2x — 3 and

f(x) = V/x.

The domain is x2 — 2x — 3 > 0, -1 3
l.e. (x+1)(x—-3)>0.

Sox>3orx < —1.
The rangeis y > 0.
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x ifx>0

The modulus function f(x) = |x| = { _x ifx<0

Example 2.2.2: Sketch the graph of f(x) = |x® — 2x — 3.

f(x)=4 —x®+2x+3 if —1<x<3

x2 —2x -8 ifx<—1
x2 —2x -3 ifx>3.
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Example 2.2.3: Solve |x — 3| = 2x.

2X

|x-3

3

From the graph we see that the solution occurs when x < 3. Therefore
we need

3— X =2x

with x < 3,i.e. x = 1.

We could also solve x — 3 = 2x, which gives x = —3. However, this
does not make sense in |x — 3| = 2x and we therefore have to discard
this solution.
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lecture 7
2.3 Trigonometric functions

We define

sinfd=>b cosf = a

/ P=(ab) for 6 € R, and
0
0 1
KJ tan 6 = b

a
for 6 € R with 0  (n+ %) = for some
necZ.

Note: |
(i) tan§ = Sino

cosf-
(i) We use radians for angles. 27 radians equals 360 degrees.

(iii) Positive angles are measured anticlockwise.
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The graphs of these functions are:

y =sinf
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y =tané
We define
cosec«9—L se09—1— cot9—1—
~ sind ~ cosd " tané

wherever these functions are defined, and set cot 5 = 0.
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A function is periodic of period t if
f(x+t) = f(x)
for all x € Dy and t is the least positive number for which this occurs.

A function is even if

for all x € Dy and odd if

for all x € Dy.
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Here is a summary of the basic properties of trigonometric functions

Function Domain Range Period Zeros  Odd/Even
sin R ly| <1 27 nm @)
cos R yl<1 2r (B« E
tan 0 + (2”2“)% R T nm @)

cosec 0 # nm ly|>1 2« — O
sec  0# () x |y|>1 2n —~ E
cot 0 #£ nm R 7 (%) s O
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You must memorise the following values:

0§ F 5 3
sing 0 3 \}—2 V3
cosg 1 L 5 3 0
tang 0O % 1 V3 -

You must also know all of the following identities:

sin(x) = cos (g — x) cot(x) = tan (ﬁ — x)

2
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cos2x +sin®x =1
cotfx + 1 =cosec?x
1 +tan®x = sec?x

sin(x + y) = sinxcosy + cos xsiny
cos(x + y) =cosxcosy —sinxsiny
tan(x + y) _ tanx+tany

~ 1—tanxtany

(From these you can work out sin(x — y) etc.)
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Special cases of these last equations which should also be known are:

sin(2x) = 2sin x cos x
cos(2x) = cos? x — sin? x

tan(2x) = ;20

You should also know:

X—

sinx +siny = 2sin (*%*
oS X + cos y = 2¢os (%5

cos(
) cos (%*

m‘
'”<v
\/

/—\
\/
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This last pair of equations can be derived from the preceding sets. For
example,letx=p+qandy =p—q. Then

sinx +siny =sin(p+ q) + sin(p — q).
The righthand side equals

sinpcos g+ cospsing
—cospsing +sinpcosqg

which equals

2sinpcos g = 2sin <X2ﬂ> cos (xz;y> .
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Example 2.3.1: Express sin 36 in terms of sin 6.

sin30 = sin(6 + 26)

sin 6 cos 260 + cos 0 sin 20

sin A(cos?  — sin §) + 2 cos f sin A cos §
3sinfcos? g — sin® 0

3sinf(1 —sin®4) —sin° 4

— 3sinf —4sin®4
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lecture 8
When solving any trigonometric equation, we ultimately reduce this to
solving some equation of the form

f(6)=a

where f is a trigonometric function such as cos, sin, or tan. Thus we
must know the general solution to such equations.

As the functions are periodic of period 27 (respectively ) for cos and
sin (respectively tan), it is enough to find all solutions in some 2«
period (respectively m period).

For sin, if 8 is a solution then so is m — 6.

For cos if 8 is a solution then so is —6.

Tan is injective on the domain —5 < 6 < 3, so has only one solution in
each period.
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In summary, the general solutions (which are to be memorised) in
terms of a particular solution @ are:

sin +2nmrorm—0+2nTt withneZ

cos 46+ 2nnw with n € Z
tan 0+ nrm with ne Z
Example 2.3.2: Find the general solution to cos 6 = %

One solution is 0 = 7, so the general solution is

92i2+2n7rwithnez.
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Example 2.3.3: Find all solutions to sin260 = —@ with —m < 6 < 3.

One solution is 20 = —7, and so the general solution is

26:—g+2n7r or 26:4%+2n7r with n € Z.

Therefore

9:—g+n7r or 0:4%+n7r with n € Z.

In the required range 6 takes the values

m 50 11n 17x m 27 S5m 8w
6 6° 6" 6 3 33" 3°
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Example 2.3.4: Solve 2co0s? 26 —sin20 = 1 for 0 < § < 2.

2c0s°20 —sin20 — 1 = 2(1 — sin® 26) — sin20 — 1
and so we require
(2sin260 —1)(sin20 +1) = 0.

This has solutions sin20 = } and —1. We want 0 < 26 < 4r. For
sin2¢ = } have

7 57 137 17«
=666 6
and for sin20 = —1 have
37 77
20_?,?.

Therefore
7w 57 137 177 37 77

T12°12° 127127 4 4
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6

A function of the form acos 6 + bsin 6 can be rewritten in either of the
forms Rcos(f — «) or Rsin(6 + «) for suitable choices of R > 0 and
—5 < a < 5. Suppose

acosf + bsind = Rcos(f — «)
= Rcosfdcosa+ Rsinfsina.

Comparing coefficients we have
a=Rcosa and b= Rsina.

Therefore
R?(cos® o + sina) = R? = & + b?
and so R = v a2 + b2. Then
Rsina 9
Rcos « a

and so a = tan™" (2).
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Similarly

acosf + bsinf = v a2 + b2sin (9+tan‘1 (E)) .

b

Example 2.3.5: Find the general solution of the equation
V3cosx +sinx = 1.

Let v/3cos x +sinx = Rcos(x —a) with R >0and —% < a < 5. By
the above we have

1
R=+v1+3 and tana=—
V3

which implies that R = 2 and o = 5. Thus we have to solve
T
2C0s (x— 5) =1.

This has general solution

x—g:ig+2n7r with n € Z.
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There is a simple method for solving an equation of the form
cos afl = cos bé.

By the general form of the solution to cos we must have

ad = 2nm + bo
and so 5
0 = aiﬂb with n € Z.

Similar results hold for
sin af = sin bf

and

tan af = tan bé.
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This method works when both sides of the equation involve the same
function. Sometimes we will have to first rearrange to ensure this.

Example 2.3.6: Find the general solution of cos 20 = sin 4.

sing = cos(5 — ¢) and so cos(2¢) = cos(5 — ). Therefore
T .
20—2n7ri(§—9) with n € Z.

Rearranging, we find that

2 .
9:$+g or 9:2n7r—g with n € Z.

Andreas Fring (City University London) AS1051 Lecture 5-8 Autumn 2010 35/35



