

Mathematics for Actuarial Science (AS1051)

2011

Full marks can be obtained by answering all six questions. All necessary working must be shown.

TIME ALLOWED: 90 minutes

1) [6 marks] Solve the following set of equations

$$7x + y - 2z = 4,$$

$$-20w + 2x - y + z = 2,$$

$$w - x + 3y + z = -5,$$

$$-7w - 2x + y + 2z = 1,$$

for w, x, y and z.

2) [9 marks] Solve the equation

$$7\cosh\theta - 2\sinh^2\theta = 8$$

for θ . Express your answer in terms of logarithmic functions.

3) [9 marks] A parabola is parameterised in the form

$$x^2 + y^2 = (8 + x)^2$$
.

Find a transformation $(x, y) \to (X, Y)$ which converts the parabola into its normal form $Y^2 = 4aX$ and determine the constant *a*. In the (X, Y)-coordinate system find the points of intersection between the parabola and the line \mathcal{L} passing through the points (0, 1) and (2, 7). At each point of intersection find the equations of the line through that point and perpendicular to \mathcal{L} .

4) [6 marks] Find the set of values of x for which

$$\frac{(x-2)(x-1)}{(x+2)} < 1.$$

Turn over ...

5) [11 marks] Compute the integrals

i)
$$4 \int \sin 5\theta \cos 9\theta d\theta$$
 and *ii*) $\int \frac{4x^2 + 9x + 7}{(3+x)(x^2 + x + 2)} dx$.

6) [9 marks] Compute enough terms of the Taylor expansion for the function

$$f(x) = \arctan(1+x)$$

about x = 0 to approximate f(x) by a cubic equation.