

Mathematics for Actuarial Science (AS1051)

2010 (Solutions)

Full marks can be obtained by answering all six questions. All necessary working must be shown.

Time allowed: 90 minutes

1) The general term in the expansion is

[3 marks]

$$\left(x^5 + \frac{2}{x^3}\right)^{13} \sim {13 \choose k} \left(x^5\right)^{13-k} \left(\frac{2}{x^3}\right)^k$$
$$= {13 \choose k} 2^k x^{5(13-k)-3k}$$

For this to be proportional to x we require 5(13 - k) - 3k = 1 and therefore k = 8. Then the coefficient becomes

[3 marks]

$$\binom{13}{8}2^8 = \frac{13!}{8!(13-8)!}2^8 = \frac{9\ 10\ 11\ 12\ 13}{2\ 3\ 4\ 5}2^8 = 2^8 \times 3^2 \times 11 \times 13.$$

=6

2) Completing the squares gives

$$2(x^{2} - 2x + 1) - 2 + 3\left(y^{2} + \frac{5}{3}y + \left(\frac{5}{6}\right)^{2}\right) - \left(\frac{5}{6}\right)^{2} + 3 + 4 = 0$$
$$2(x - 1)^{2} + 3\left(y + \frac{5}{6}\right)^{2} = 2 - 4 + \frac{25}{12} = \frac{1}{12}$$

The normal form of the ellipse is therefore

$$\frac{(x-1)^2}{1/24} + \frac{\left(y + \frac{5}{6}\right)^2}{1/36} = 1 ,$$

such that $a^2 = 1/24$ and $b^2 = 1/36$.

[4 mark]

 \Rightarrow The centre is at (1, -5/6).

[1 mark]

 \Rightarrow The length of the major axis is $2a = 2/\sqrt{24} = 1/\sqrt{6}$.

[1 mark]

 \Rightarrow The length of the minor axis is $2b = 2/\sqrt{36} = 1/3$.

$$\Rightarrow$$
 The eccentricity is $e = \sqrt{1 - b^2/a^2} = \sqrt{1 - 24/36} = \sqrt{1 - 2/3} = 1/\sqrt{3}$. [1 mark]

$$\Rightarrow$$
 The foci are at $(1 \pm ae, -5/6) = (1 \pm 1/6\sqrt{2}, -5/6)$. [1 mark]

$$\Rightarrow$$
 The equation of the directrix is $x = 1 - b^2/ae = 1 - \sqrt{2}/6$. [1 mark]

$$\sum = 9$$

$$x(t) = 4t^2 + 3$$
 and $y(t) = \ln(2t^2 + 1)$

we compute

$$\frac{dx}{dt} = 8t$$
 and $\frac{dy}{dt} = \frac{4t}{2t^2 + 1}$

and subsequently

$$\frac{d^2x}{dt^2} = 8$$
 and $\frac{d^2y}{dt^2} = -\frac{4(1-2t^2)}{(2t^2+1)^2}$.

Therefore

$$\frac{dy}{dx} = \frac{1}{2(1+2t^2)}, \quad \frac{d^2y}{dt^2}\frac{d^2t}{dx^2} = \frac{1-2t^2}{2(2t^2+1)^2}$$
 [3 marks]

[2 marks]

[2 marks]

and

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dx}\right)\frac{dt}{dx} = \frac{d}{dt}\left(\frac{1}{2(1+2t^2)}\right)\frac{1}{8t}$$
$$= \frac{1}{4(2t^2+1)^2},$$

such that

$$p(t) = \frac{1}{2(2t^2 - 1)}.$$
 [4 marks]

 $\sum = 9$

4) First show the validity for
$$n = 1$$
 [1 mark]

$$\frac{dy}{dx} = a\cos(ax) = a\sin\left(ax + \frac{\pi}{2}\right).$$

Next assume the validity for n-1

$$\frac{d^{n-1}y}{dx^{n-1}} = a^{n-1}\sin\left[ax + \frac{(n-1)\pi}{2}\right].$$

Therefore [3 marks]

$$\frac{d^n y}{dx^n} = \frac{d}{dx} \frac{d^{n-1} y}{dx^{n-1}} = a^{n-1} a \cos \left[ax + \frac{(n-1)\pi}{2} \right]$$
$$= a^n \sin \left[ax + \frac{(n-1)\pi}{2} + \frac{\pi}{2} \right] = a^n \sin \left[ax + \frac{n\pi}{2} \right].$$

5) i) Using
$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$
 we have
$$\int \cos 5\theta \cos 4\theta d\theta = \frac{1}{2} \int \cos \theta + \cos 9\theta d\theta = \frac{1}{2} \sin \theta + \frac{1}{18} \sin 9\theta + C$$
 [4 marks]

ii) We integrate by parts

$$I = 9 \int x^2 e^{3x} dx$$

with $u=x^2, \frac{dv}{dx}=e^{3x}$ and $\frac{du}{dx}=2x, v=\frac{1}{3}e^{3x}$

$$I = 9x^2 \frac{1}{3}e^{3x} - 9 \int 2x \frac{1}{3}e^{3x} dx.$$

Integrating again by parts with $u=x, \frac{dv}{dx}=e^{3x}$ and $\frac{du}{dx}=1, v=\frac{1}{3}e^{3x}$ gives

$$I = 3x^{2}e^{3x} - 9\frac{2}{3}x\frac{1}{3}e^{3x} + 9\frac{2}{3}\int \frac{1}{3}e^{3x}dx$$
$$= 3x^{2}e^{3x} - 2xe^{3x} + 2\frac{1}{3}e^{3x} + C = \frac{1}{3}e^{3x}(2 - 6x + 9x^{2}) + C.$$

 $\sum = 11$

[7 marks]

6) We compute

$$f(0) = 0, \\ \sin(x)$$

$$f'(x) = \cos(x)\log(x+1) + \frac{\sin(x)}{x+1} \implies f'(0) = 0,$$

$$f''(x) = \frac{2\cos(x)}{x+1} - \log(x+1)\sin(x) - \frac{\sin(x)}{(x+1)^2} \implies f''(0) = 2,$$

$$f'''(x) = -\log(x+1)\cos(x) - \frac{3\cos(x)}{(x+1)^2} - \frac{3\sin(x)}{x+1} + \frac{2\sin(x)}{(x+1)^3} \implies f'''(0) = -3.$$

Therefore the Taylor expansion up to the first two non-zero terms is

[2 marks]

$$f(x) = \frac{2}{2}x^2 - \frac{3}{3!}x^3 = x^2 - \frac{1}{2}x^3.$$

 $\sum = 9$