Mathematics for Actuarial Science 4

- 1. Differentiate the following functions with respect to x:
 - (a) $4x^3 2x^2 + 1 + x^{-2}$,
 - (b) $\cos(3x+2)$,
 - (c) $\frac{x}{x^2+1}$,
 - (d) $x \ln x$,
 - (e) $\sqrt{1+x^2}$,
 - (f) $e^x \cos(x^2)$,
 - (g) $\frac{x-8}{(x+2)(2x-1)}$,

(h)
$$x^{e^{-}}$$

(i)
$$\cos(\tan(x^2))$$

- 2. Differentiate the following functions with respect to x:
 - (a) $x^3 + 3xy^2 2xy + x^{-4}y^{-3} = 0$, (b) $\cos(x)\sin(y) = 1$, (c) $\cos(y\tan(x)) = \ln(xy)$, (d) $\frac{x+2\sin(y)+4}{(x-y)} = \cot(y)$, (e) $y\tan(x^{-1}) + x\sec(y^{-1}) = e^x$,
- 3. Differentiate the following functions with respect to x:
 - (a) $x = t^2 + 2t + 1, y = 7t^3$, (b) $x = \cos(t), y = \cot(t)$, (c) $x = \ln(\sqrt{1+2t^2}), y = t^3 + t$, (d) $x = \cos(t)e^{t^2}, y = \sin(t)e^{-t^2}$, (e) $x = \frac{1}{\ln(t)}, y = 3\tan(4t)$.
- 4. Given that $y = e^{-x} \sin(x\sqrt{3})$, prove that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -2e^{-x}\sin\left(x\sqrt{3} - \frac{\pi}{3}\right).$$

Show also that $\frac{d^3y}{dx^3} = ky$ for some constant k, and state the value of k. 5. If $f(x) = 3 - \frac{x^2}{4} + \ln\left(\frac{x}{2}\right)$,

- (a) show that there is a root α of f(x) = 0 such that $0.09 < \alpha < 0.1$
- (b) find f'(x) and obtain the value of β such that $f'(\beta) = 0$.

6. (*) If
$$y = \ln\left(1 + \sqrt{(1+x)}\right)$$
, show that
$$4x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} = (1+x)^{-\frac{3}{2}}.$$