AS1051

CITY UNIVERSITY London

BSc Honours Degree in Actuarial Science

PART I EXAMINATION

Mathematics for Actuarial Science 2

2009

Time allowed: 2 hours

Full marks may be obtained for correct answers to ALL of the SIX questions in Section A and TWO of the THREE questions in Section B. If more than TWO questions from Section B are answered, the best TWO marks will be credited.

Turn over . . .

Section A

Answer all questions from this section. Each question carries 8 marks.

- Find an equation for the ellipse with focus at (1,6), centre at (1,8) and major axis of length 10.
- 2. Prove by induction that $2^{n+2} + 3^{2n+1}$ is divisible by 7. [8]
- 3. We define the relation ρ on the set of complex numbers \mathbb{C} by

$$z' \rho z \Leftrightarrow \exists n \in \mathbb{Z} \text{ such that } \arg z' - \arg z = 2n\pi$$
,

where $\arg z$ means argument of z.

- (a) Give the definition of an equivalence relation on a set S.
- (b) Show that ρ is an equivalence relation on \mathbb{C} .

- 4. (a) Find the general solution of $3u_{n+1} = 6u_n + 3$, $n \ge 0$.
 - (b) Find the solution of $u_{n+2} u_{n+1} 6u_n = 6$, $n \ge 0$ with $u_0 = 1$ and $u_1 = 5$.

[8]

5. Let a be a real number and M the matrix given by

$$\left(\begin{array}{rrrr} a & 1 & 0 \\ 3 & 1 & 2 \\ 2 & 1 & a \end{array}\right)$$

- (a) Find the values of a for which M is not invertible.
- (b) Find the inverse of M for a = 0.

[8]

Turn over ...

- 6. Let $n \ge 1$ be an integer. Let $\omega = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$.
 - (a) Show that $\omega^n = 1$.
 - (b) Let $n \ge 2$. Using the formula for the sum of the first n terms of a geometric sequence, deduce that

$$1 + \omega + \omega^2 + \dots + \omega^{n-1} = 0.$$

[8]

Section B

Answer two questions from this section. Each question carries 26 marks.

7. (a) Find the general solution of the equation

$$2\sin 2\theta = \sqrt{3}\tan 2\theta.$$

[9]

(b) If $2x + y = \frac{\pi}{4}$ show that

$$\tan y = \frac{1 - 2\tan x - \tan^2 x}{1 + 2\tan x - \tan^2 x}.$$

Hence deduce that $\tan \frac{\pi}{8}$ is a root of $t^2 + 2t - 1$, and that its value is $\sqrt{2} - 1$. [8]

- (c) Write down an expression for $\cosh^{-1} x$ in terms of ln, and state for which values the function is defined. [3]
- (d) Solve the equation

$$\cosh^2 x + \sinh^2 x = 4.$$
 [6]

8. (a) Prove by induction that for all $n \ge 1$,

$$\sum_{j=1}^{n} j^3 = \left(\sum_{j=1}^{n} j\right)^2.$$

Hence deduce an explicit expression for $\sum_{j=1}^{n} j^3$ in terms of n. [10]

(b) The area under the curve of $x \mapsto x^3$ between x = 0 and x = 1 can be successively approximated by

$$A_n = \frac{1}{n} \sum_{j=1}^n \frac{j^3}{n^3} \, .$$

Using (a), compute A_n for $n \ge 1$. [8]

Turn over . . .

(c) Deduce that

$$\lim_{n \to \infty} A_n = \int_0^1 x^3 dx$$

by computing the common value of these two expressions.

9. Consider a function f of two real variables x, y. What is the condition for it to have stationary points? What test can one use to determine whether a stationary point is a maximum, minimum or saddle point? [6] Let

$$f(x,y) = x^3 + y^3 + 3x^2 - 3y^2 - 8 \ , \ \forall x,y \in \mathbb{R} \, .$$

Determine its stationary points together with their nature.

[20]

[8]

Internal Examiners:	Dr A.G. Cox
	Dr V. Caudrelier
External Examiners:	Professor J. Billingham
	Professor E. Corrigan