AS 1051 Mathematics for Actuarial Science January progress test 2005

Time allowed: 90 minutes.

Full marks can be obtained by answering all six questions. All necessary working must be shown.

1. Calculate

$$\int_{1}^{3} \frac{1 - 4x + 3x^2}{(1 + x)^2(1 + 3x)} dx.$$

2. The function $f(\theta)$ is defined for all θ by

$$f(\theta) = 2(\sin \theta + 2\cos \theta)^2 + \cos 2\theta - 5.$$

- (a) Show that $f(\theta) = 4\cos 2\theta + 4\sin 2\theta$.
- (b) Find R > 0 and $0 < \alpha < \pi/2$ such that $f(\theta) = R \cos(2\theta \alpha)$.
- (c) Hence find the greatest and least values of $f(\theta)$.
- (d) Solve the equation $2(\sin \theta + 2\cos \theta)^2 + \cos 2\theta = 9$.

3. The equations of two circles are given by

 $x^{2} + y^{2} - 4x - 6y + 4 = 0$ and $x^{2} + y^{2} - 16x - 12y + 75 = 0.$

- (a) Find the centre and radius of each circle.
- (b) Find the equation of the straight line passing through the centres of the two circles.
- (c) Find the distance between the two centres, and hence show that the circles intersect.
- (d) Find the equation of the smallest circle which passes through the centres of the two given circles.
- 4. Calculate the following integrals.

(a)
$$\int x^2 \cos 2x dx$$
 (b) $\int_0^1 \frac{2x}{\sqrt{2x+1}} dx$ (c) $\int \frac{3}{x^2+2x+5} dx$.

5. State and prove an identity relating $\tanh^2 x$ and $\operatorname{sech}^2 x$. Hence solve

$$3\mathrm{sech}^2 x + 4\tanh x + 1 = 0.$$

6. Determine the Maclaurin series for $\cosh(2x)$ up to the term involving x^6 . Hence evaluate

$$\lim_{x \to 0} \left(\frac{\cosh(2x) - 1}{x^2} \right).$$

Examiner: Dr A. G. Cox