AS 1051 Mathematics for Actuarial Science January 2010

Time allowed: 90 minutes.

Full marks can be obtained by answering all six questions. All necessary working must be shown.

1. Let f be the function defined by

$$f(x) = \ln\left(\frac{x+3}{2x+1}\right).$$

- (a) Find the domain of this function.
- (b) Solve the inequality

$$f(x) \ge 0$$

2. If $2x + y = \frac{\pi}{4}$, show that

$$\tan y = \frac{1 - 2\tan x - \tan^2 x}{1 + 2\tan x - \tan^2 x}.$$

Hence deduce that $\tan \frac{\pi}{8}$ is a root of $t^2 + 2t - 1 = 0$, and that its value is $\sqrt{2} - 1$.

3. Calculate the following integrals.

(a)
$$\int \sin 3\theta \cos 7\theta \, d\theta$$
 (b) $\int e^x \sqrt{1 - e^{2x}} \, dx$

4. State and prove an identity involving $\operatorname{coth}^2 x$ and $\operatorname{cosech}^2 x$, and hence solve

$$3\coth x + \operatorname{cosech}^2 x = 3.$$

5. Use a Maclaurin series to give the quadratic polynomial which approximates

$$\frac{e^{2x}}{1-x}$$

6. Prove by induction that

$$\sum_{r=1}^{n} (2r-1)^2 = \frac{1}{3}n(2n-1)(2n+1).$$

Examiner: Dr A. G. Cox