Maths for Actuarial Science Answers, 2008
Paper 2 Section A

Question 1:

(y—=3? (x—1)
4 1

=

=1.

4% — 8x — (y* — 6y) = 1 rearranges to

This is the standard form for a hyperbola (but with the usual roles of x and

y reversed). [3]
We see that the centre is at (1,3) and in the standard notation b = 1 and
a = 2 where b* = a®(¢?> — 1). Therefore ¢ = 3. Then the foci are at

(1,3 £ ae) = (1,3 £+/5) and the asymptotes are given by
b

1
r—1=4—(y—3)=+=(y—23).
T a(y ) 2(y )

This rearranges to y = 2x + 1 and y = —2x + 5. [5]
Question 2: We want to prove that

n

> (2i—1)=n’

i=1

We proceed by induction. When n = 1 we have 1 = 12 which is true. [2]
Now assume the result is true for n = k; we want that this implies the result
for n = k+ 1. We have

k+1 k

dRi-1)=) 2i-D+QE+1)-1) =k +2k+1=(k+1)"

i=1 i=1

where the second equality follows from the inductive hypothesis. The result
now follows by induction. [6]

Question 3:

(a) First note that this difference equation is equivalent to, for n > 0,
Upsq — Uy = 1.

We find the general solution of the homogeneous equation. From the lectures,
this is C3" for some constant C'. Now, we find a particular solution to the



complete equation. Given the right hand side, we look for it in the form
u, = an + b for some constants a,b to be determined. Inserting we get,

—2an+a—2b=1,

—2a =0, a=20
=
{a—?bzl {b:—é

Collecting everything, we obtain the general solution as u, = C3" — 1. [3]

SO

(b) Again, here we look for the general solution of the homogeneous equation
first. This involves the auxiliary equation

a>—3a—4=0,

with roots 4 and —1.S0, the general solution of the homogeneous equation
reads

u, = A4" + B(—1)".

To this, we need to add a particular solution to the complete equation. Given
the form of the inhomogeneous term, we simply try u,, = a and get a — 3a —
4a = 1 that is a = —é. We can now impose the initial conditions on the
complete general solution u, = A4™ + B(—1)" — ¢ to fix A and B:

1 2 1 2
A+B—-—-=- and 4A-B— - =
TPTETs ™ 6 3’
which yields
1 1
A=—- and B=—-.
3 2
Finally, for all n > 0,
4" n (—H™ 1
Uy = — — =
3 2 6
[5]
Question 4:
(a) We compute the determinant of M expanding over the first row:
1 10
=13 a2|=1% 2|32 o2 3042
1 a 2 a
21 a
It is zero for a = 1 or a = 2, in which cases M is not invertible. [3]
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(b) Any method will do. We use for instance the comatrix formula
1
M~ =—A"
| M]|

where AT is the transpose of the comatrix. We compute the nine minors

0 2 3 2
]\411—‘1 0‘:—2, A[lgz 2 0 :—4, AJl ‘2 1 :3,
10 10 11
]\421:‘1 0’207 A422: 2 O :O7 A423_‘2 1’:_17
10 10 11
Mmz’OQ.zz,Mw: 5 9| =2 My= ’30.=—3,

and then the comatrix (don’t forget the signs in the cofactors),

-2 4 3
A= 0 0 1
2 =2 =3

Finally, recalling that |M| = 2 when a = 0, we get

L[ -2 0 =2
M=o 4 0 -2
3 1 -3

[5]

Question 5:

We start by writing z in polar form: z = r(cosf + isinf) for r > 0 and
¢ € [0,2x). Then, using De Moivre’s theorem we have

24 = r*(cos 40 + isin 40) .

Noting that % + z\g = cos ¢ +ising, we obtain r = 1 and § = 7; + nj.
Keeping only the values in [O 27), we obtain four solutions 6; = I, 6, = £,
03 = 2,_,5—5, 0y = 3{)7; giving
Yisi m 137 4isi 13
21 = COS — in— 29 = COS —— in—-
s =cosop Fisingy 2 =cos - +isino
T n 257 3T n 37
= —_— Sinn —— > = —_— n—
cos — s oy 0 A = cos i ol
[8]



Question 6:

We define the relation p on the set of complex numbers C by
2 pze 3dReC, R+#0suchthat 2’ = Rz.

(a) An equivalence relation on a set S is a relation p which is:
o reflexive: Ve € S, x p x,
e symmetric: Ve, y € S, x py =y p 2,
e transitive: Va,y,z€ S, zpyandypz=xpz
[3]
(b) For the given relation we need to check these three properties.
e reflexive: V2 € C, 2 = 1.2 s0o R =1 is suitable.

e symmetric: Suppose 2z’ p z then there exists R # 0 such that 2’ = Rz.
As R # 0, it is invertible so z = R™12" and we deduce z p 2/,

e transitive: Suppose z” p 2z and 2’ p z then there exists R # 0 and
R’ # 0 such that 2 = R’z and 2/ = Rz. Thus, 2" = R'Rz and
R'R+#0s0 2" pz.

[5]



Paper 2 Section B

Question 7:

(a) We have
sin 50 + sin 8 = 2 sin 30 cos 26.

Therefore we must solve

sin36(2cos20 — 1) = 0.

[4]
If sin 3¢ = 0 then
nm
0 =—
3
with n € Z. If cos260 = 1/2 then
1
2% =+ 421 so = |n+t-)x
3 6
with n € Z. [6]
(b) We have
cosdr = 2cos? 2r — 1.
Therefore
cosdr =2(2cos’xr — 1) -1
=2(1—2sin’2)? -1
= 2(1 +4sin*x — 4sinx) — 1
= 8sin'z — 8sin*z + 1.
[6]
(c) For —1 < z < 1 the value of sin™! z is defined to be the unique y such
that x = siny and —§ <y < 7. [3]
(d) Let

4cosz + 3sinx = Rcos(z — ).

Expanding we have
4dcosx + 3sinx = Recosxcosa + Rsinxsin o
and comparing coefficients we obtain
Rcosa=4 and Rsina = 3.

Therefore R? = 16+9 = 25 so R = 5. Thus the maximum value occurs when
cos(x —a) = —1, and equals 1/3. Similarly the minimum value occurs when
cos(x — a) = +1, and equals 1/13. [7]



Question 8:

For n € N, define
~n(n+1)(2n+1)

Uy, 6

(a) For all j > 1,

wy—uy, = AUHDEIED G -DE -

6 6
(2% +3j+1—25°+35— 1)

Il
“l\-gcvlh

[7]
(b) This question uses a method seen in the lectures when talking about the
"difference test” for series.

Ie~j2 1< 1
4= Z w2 Z(u ~ =) = gt = o).

So, forn > 1,
n(n+1)(2n+1)
A, = : .
6n>

[10]
(¢) On the one hand, directly from the previous expression, we get
nn+1)2n+1) 2 1

lim A,, = lim
n—00 n—00 6m3 6 3

On the other hand,

[9]

Question 9:

(a) Augmnented matrix

1 -3 -2
-2 1 -1 1
-1 2 a?



After row reduction get

1 -3 -2 1

0 =5 -5 5

0 0 a®>-1 a+1
a = 1: No solutions, a = 0: Unique solution, a = —1: Infinite number
of solutions [13]

(b) Augmnented matrix

1 -2 -1 100
-3 1 2010
-2 -1 00 01

After first set of row reductions and a swap

1 -2 -1 1 020
0O -5 -1 3 10
6 ¢ -1 -1 -1 1

Next set of row operations

1 0 0 2/5 1/5 —3/5
0 -5 0 4 2 -1
0 0 -1 -1 -1 1

multiply bottom two rows by —1/5 and —1 to get
2/5 1/5 -=3/5

100
010 —4/5 —2/5 1/5
00 1 1 1 -1

with the inverse given by the right 3 columns. [13]



