Maths for Actuarial Science Answers, 2008

Paper 2 Section A

Question 1:

$$4x^2 - 8x - (y^2 - 6y) = 1$$
 rearranges to $\frac{(y-3)^2}{4} - \frac{(x-1)^2}{1} = 1$.

This is the standard form for a hyperbola (but with the usual roles of x and y reversed). [3]

We see that the centre is at (1,3) and in the standard notation b=1 and a=2 where $b^2=a^2(e^2-1)$. Therefore $e=\frac{\sqrt{5}}{2}$. Then the foci are at $(1,3\pm ae)=(1,3\pm\sqrt{5})$ and the asymptotes are given by

$$x-1 = \pm \frac{b}{a}(y-3) = \pm \frac{1}{2}(y-3).$$

[5]

This rearranges to y = 2x + 1 and y = -2x + 5.

Question 2: We want to prove that

$$\sum_{i=1}^{n} (2i-1) = n^2.$$

We proceed by induction. When n = 1 we have $1 = 1^2$ which is true. [2] Now assume the result is true for n = k; we want that this implies the result for n = k + 1. We have

$$\sum_{i=1}^{k+1} (2i-1) = \sum_{i=1}^{k} (2i-1) + (2(k+1)-1) = k^2 + 2k + 1 = (k+1)^2.$$

where the second equality follows from the inductive hypothesis. The result now follows by induction. [6]

Question 3:

(a) First note that this difference equation is equivalent to, for $n \geq 0$,

$$u_{n+1} - 3u_n = 1$$
.

We find the general solution of the homogeneous equation. From the lectures, this is $C3^n$ for some constant C. Now, we find a particular solution to the

complete equation. Given the right hand side, we look for it in the form $u_n = an + b$ for some constants a, b to be determined. Inserting we get,

$$-2an + a - 2b = 1.$$

SO

$$\begin{cases}
-2a = 0, \\
a - 2b = 1
\end{cases} \Leftrightarrow \begin{cases}
a = 0, \\
b = -\frac{1}{2}
\end{cases}$$

Collecting everything, we obtain the general solution as $u_n = C3^n - \frac{1}{2}$. [3]

(b) Again, here we look for the general solution of the homogeneous equation first. This involves the auxiliary equation

$$a^2 - 3a - 4 = 0,$$

with roots 4 and -1.5o, the general solution of the homogeneous equation reads

$$u_n = A4^n + B(-1)^n.$$

To this, we need to add a particular solution to the complete equation. Given the form of the inhomogeneous term, we simply try $u_n = a$ and get a - 3a - 4a = 1 that is $a = -\frac{1}{6}$. We can now impose the initial conditions on the complete general solution $u_n = A4^n + B(-1)^n - \frac{1}{6}$ to fix A and B:

$$A + B - \frac{1}{6} = \frac{2}{3}$$
 and $4A - B - \frac{1}{6} = \frac{2}{3}$,

which yields

$$A = \frac{1}{3}$$
 and $B = \frac{1}{2}$.

Finally, for all $n \geq 0$,

$$u_n = \frac{4^n}{3} + \frac{(-1)^n}{2} - \frac{1}{6}$$

[5]

Question 4:

(a) We compute the determinant of M expanding over the first row:

$$|M| = \begin{vmatrix} 1 & 1 & 0 \\ 3 & a & 2 \\ 2 & 1 & a \end{vmatrix} = \begin{vmatrix} a & 2 \\ 1 & a \end{vmatrix} - \begin{vmatrix} 3 & 2 \\ 2 & a \end{vmatrix} = a^2 - 3a + 2.$$

It is zero for a = 1 or a = 2, in which cases M is not invertible. [3]

(b) Any method will do. We use for instance the comatrix formula

$$M^{-1} = \frac{1}{|M|} A^T \,,$$

where A^T is the transpose of the comatrix. We compute the nine minors

$$M_{11} = \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} = -2 , \quad M_{12} = \begin{vmatrix} 3 & 2 \\ 2 & 0 \end{vmatrix} = -4 , \quad M_{13} = \begin{vmatrix} 3 & 0 \\ 2 & 1 \end{vmatrix} = 3,$$

$$M_{21} = \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} = 0 , \quad M_{22} = \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} = 0 , \quad M_{23} = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -1,$$

$$M_{31} = \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} = 2 , \quad M_{32} = \begin{vmatrix} 1 & 0 \\ 3 & 2 \end{vmatrix} = 2 , \quad M_{33} = \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} = -3,$$

and then the comatrix (don't forget the signs in the cofactors),

$$A = \left(\begin{array}{ccc} -2 & 4 & 3\\ 0 & 0 & 1\\ 2 & -2 & -3 \end{array}\right) .$$

Finally, recalling that |M| = 2 when a = 0, we get

$$M^{-1} = \frac{1}{2} \left(\begin{array}{ccc} -2 & 0 & -2 \\ 4 & 0 & -2 \\ 3 & 1 & -3 \end{array} \right) .$$

[5]

Question 5:

We start by writing z in polar form: $z = r(\cos \theta + i \sin \theta)$ for r > 0 and $\theta \in [0, 2\pi)$. Then, using De Moivre's theorem we have

$$z^4 = r^4(\cos 4\theta + i\sin 4\theta).$$

Noting that $\frac{1}{2} + i\frac{\sqrt{3}}{2} = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$, we obtain r = 1 and $\theta = \frac{\pi}{24} + n\frac{\pi}{2}$. Keeping only the values in $[0, 2\pi)$, we obtain four solutions $\theta_1 = \frac{\pi}{24}$, $\theta_2 = \frac{13\pi}{24}$, $\theta_3 = \frac{25\pi}{24}$, $\theta_4 = \frac{37\pi}{24}$ giving

$$z_1 = \cos\frac{\pi}{24} + i\sin\frac{\pi}{24}$$
, $z_2 = \cos\frac{13\pi}{24} + i\sin\frac{13\pi}{24}$

$$z_3 = \cos \frac{25\pi}{24} + i \sin \frac{25\pi}{24}$$
, $z_1 = \cos \frac{37\pi}{24} + i \sin \frac{37\pi}{24}$

[8]

Question 6:

We define the relation ρ on the set of complex numbers $\mathbb C$ by

$$z' \rho z \Leftrightarrow \exists R \in \mathbb{C} , R \neq 0 \text{ such that } z' = Rz.$$

- (a) An equivalence relation on a set S is a relation ρ which is:
 - reflexive: $\forall x \in S, x \rho x$,
 - symmetric: $\forall x, y \in S, x \rho y \Rightarrow y \rho x$,
 - transitive: $\forall x, y, z \in S$, $x \rho y$ and $y \rho z \Rightarrow x \rho z$

[3]

- (b) For the given relation we need to check these three properties.
 - reflexive: $\forall z \in \mathbb{C}, z = 1.z \text{ so } R = 1 \text{ is suitable.}$
 - symmetric: Suppose $z' \rho z$ then there exists $R \neq 0$ such that z' = Rz. As $R \neq 0$, it is invertible so $z = R^{-1}z'$ and we deduce $z \rho z'$,
 - transitive: Suppose $z'' \rho z'$ and $z' \rho z$ then there exists $R \neq 0$ and $R' \neq 0$ such that z'' = R'z' and z' = Rz. Thus, z'' = R'Rz and $R'R \neq 0$ so $z'' \rho z$.

[5]

Paper 2 Section B

Question 7:

(a) We have

$$\sin 5\theta + \sin \theta = 2\sin 3\theta\cos 2\theta.$$

Therefore we must solve

$$\sin 3\theta (2\cos 2\theta - 1) = 0.$$

If $\sin 3\theta = 0$ then

$$\theta = \frac{n\pi}{3}$$

with $n \in \mathbb{Z}$. If $\cos 2\theta = 1/2$ then

$$2\theta = \pm \frac{\pi}{3} + 2n\pi$$
 so $\theta = \left(n \pm \frac{1}{6}\right)\pi$

with $n \in \mathbb{Z}$.

(b) We have

$$\cos 4x = 2\cos^2 2x - 1.$$

Therefore

$$\cos 4x = 2(2\cos^2 x - 1)^2 - 1$$

= 2(1 - 2\sin^2 x)^2 - 1
= 2(1 + 4\sin^4 x - 4\sin^2 x) - 1
= 8\sin^4 x - 8\sin^2 x + 1.

[6]

[4]

- (c) For $-1 \le x \le 1$ the value of $\sin^{-1} x$ is defined to be the unique y such that $x = \sin y$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.
- (d) Let

$$4\cos x + 3\sin x = R\cos(x - \alpha).$$

Expanding we have

$$4\cos x + 3\sin x = R\cos x\cos\alpha + R\sin x\sin\alpha$$

and comparing coefficients we obtain

$$R\cos\alpha = 4$$
 and $R\sin\alpha = 3$.

Therefore $R^2 = 16 + 9 = 25$ so R = 5. Thus the maximum value occurs when $\cos(x - \alpha) = -1$, and equals 1/3. Similarly the minimum value occurs when $\cos(x - \alpha) = +1$, and equals 1/13. [7]

Question 8:

For $n \in \mathbb{N}$, define

$$u_n = \frac{n(n+1)(2n+1)}{6}$$
.

(a) For all $j \geq 1$,

$$u_{j} - u_{j-1} = \frac{j(j+1)(2j+1)}{6} - \frac{j(j-1)(2j-1)}{6}$$
$$= \frac{j}{6} (2j^{2} + 3j + 1 - 2j^{2} + 3j - 1)$$
$$= j^{2}.$$

[7]

(b) This question uses a method seen in the lectures when talking about the "difference test" for series.

$$A_n = \frac{1}{n} \sum_{j=1}^n \frac{j^2}{n^2} = \frac{1}{n^3} \sum_{j=1}^n (u_j - u_{j-1}) = \frac{1}{n^3} (u_n - u_0).$$

So, for $n \ge 1$,

$$A_n = \frac{n(n+1)(2n+1)}{6n^3}$$
.

[10]

(c) On the one hand, directly from the previous expression, we get

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3} = \frac{2}{6} = \frac{1}{3}.$$

On the other hand,

$$\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}.$$

[9]

Question 9:

(a) Augmnented matrix

$$\left(\begin{array}{cccc}
1 & -3 & -2 & 2 \\
-2 & 1 & -1 & 1 \\
-1 & 2 & a^2 & a
\end{array}\right).$$

After row reduction get

$$\left(\begin{array}{cccc}
1 & -3 & -2 & 1 \\
0 & -5 & -5 & 5 \\
0 & 0 & a^2 - 1 & a + 1
\end{array}\right).$$

a=1: No solutions, a=0: Unique solution, a=-1: Infinite number of solutions [13]

(b) Augmnented matrix

$$\left(\begin{array}{cccccccc}
1 & -2 & -1 & 1 & 0 & 0 \\
-3 & 1 & 2 & 0 & 1 & 0 \\
-2 & -1 & 0 & 0 & 0 & 1
\end{array}\right).$$

After first set of row reductions and a swap

$$\left(\begin{array}{ccccccc}
1 & -2 & -1 & 1 & 0 & 0 \\
0 & -5 & -1 & 3 & 1 & 0 \\
0 & 0 & -1 & -1 & -1 & 1
\end{array}\right).$$

Next set of row operations

$$\left(\begin{array}{ccccccc}
1 & 0 & 0 & 2/5 & 1/5 & -3/5 \\
0 & -5 & 0 & 4 & 2 & -1 \\
0 & 0 & -1 & -1 & -1 & 1
\end{array}\right).$$

multiply bottom two rows by -1/5 and -1 to get

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & 2/5 & 1/5 & -3/5 \\
0 & 1 & 0 & -4/5 & -2/5 & 1/5 \\
0 & 0 & 1 & 1 & 1 & -1
\end{array}\right).$$

with the inverse given by the right 3 columns.