Maths for Actuarial Science Answers, 2009

Paper 1 Section A

Question 1:

$$\frac{x^2 - 10x + 15}{(1+x)(2-x)^2} = \frac{A}{1+x} + \frac{B}{2-x} + \frac{C}{(2-x)^2}.$$

Solving we find $A = \frac{26}{9}$, $B = \frac{17}{9}$, and $C = -\frac{1}{3}$. [5] Hence

$$\int \frac{x^2 - 10x + 15}{(1+x)(2-x)^2} dx = \frac{26}{9} \ln(1+x) - \frac{17}{9} \ln(2-x) - \frac{1}{3(2-x)} + K.$$
 [3]

Question 2:

The circles have centres (1,2) and (3,1), and the line passing through the two centres is x + 2y = 5. [3]

Circles meet when

$$x^2 + y^2 - 2x - 4y - 4 = x^2 + y^2 - 6x - 2y - 8$$

i.e. when 4x - 2y = 4, or y = 2x + 2.

For points, substitute into equation and get

$$\left(\frac{1+\sqrt{41}}{5}, \frac{12+2\sqrt{41}}{5}\right)$$
 and $\left(\frac{1-\sqrt{41}}{5}, \frac{12-2\sqrt{41}}{5}\right)$.

[2]

Question 3:

(a) Let $u = e^x$. Then

$$\int \frac{e^x}{1 - e^{2x}} dx = \int \frac{1}{1 - u^2} du = \int \frac{1}{2} \left(\frac{1}{1 - u} + \frac{1}{1 + u} \right) du = \frac{1}{2} \ln \left(\frac{1 + e^x}{1 - e^x} \right) + C.$$
[4]

(b)
$$\int \frac{5}{2x^2 + 5} dx = \frac{5}{2} \int \frac{1}{x^2 + \frac{5}{2}} dx = \sqrt{\frac{5}{2}} \tan^{-1} \left(x \sqrt{\frac{2}{5}} \right) + C.$$
 [4]

Question 4:

Verify the first identity.

[3]

Differentiate the given equation n times and collect terms to deduce the second identity. [5]

Question 5:

The integrating factor here is

$$\exp(\int \cot x dx) = \exp(\int \frac{\cos x}{\sin x} dx) = \exp(\ln \sin x) = \sin x.$$

[3]

So we know that the general solution of this equation reads

$$f(x) = \frac{1}{\sin x} \left(\int \sin x \csc x \, dx + C \right) \,,$$

where C is a constant.

[3]

Finally

$$f(x) = \frac{x+C}{\sin x} \,.$$

It is defined for $\sin x \neq 0$ i.e. for $x \neq n\pi$, $n \in \mathbb{Z}$.

[2]

Question 6:

1. This is a direct application of the identity

$$(a+b)^2 - (a-b)^2 = 4ab$$

with $a = \frac{x^2}{2}$ and $b = \frac{1}{2x^2}$ defined for $x \neq 0$.

[2]

2. We use the formula seen in the lectures

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{df}{dx}\right)^{2}} dx$$

with $f(x) = \frac{x^3}{6} + \frac{1}{2x}$, a = 1 and b = 2. So

$$L = \int_{1}^{2} \sqrt{1 + \left(\frac{x^{2}}{2} - \frac{1}{2x^{2}}\right)^{2}} = \int_{1}^{2} \left(\frac{x^{2}}{2} + \frac{1}{2x^{2}}\right) dx$$

using the first part.

$$\int_{1}^{2} \left(\frac{x^{2}}{2} + \frac{1}{2x^{2}} \right) dx = \left[\frac{x^{3}}{6} - \frac{1}{2x} \right]_{1}^{2} = \frac{17}{12}.$$
 [3]

Section B

Question 7:

(a) The Maclaurin series of a function f up to quadratic term is given by

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2.$$

Differentiating we find that

$$f'(x) = \frac{xe^x}{(1+x)^2}$$
 and $f''(x) = \frac{e^x(1+x)^3 - 2(1+x)xe^x}{(1+x)^4}$.

Thus we obtain

$$f(x) \approx 1 + \frac{x^2}{2}.$$

[9]

(b) When n = 1 the result is easy. Now suppose the result is true for n = k; we need that this implies it is true for n = k + 1. Differentiating $f^{(k)}(x)$ we get

$$3^{k-1}(3e^{3x} + 3(3x+n)e^{3x}) = 3^{k-1}(9x+3n+3)e^{3x}$$

which simplifies to give the desired expression for $f^{(k+1)}(x)$. Hence the result follows by induction. [8]

(c) Integrating I_n by parts we obtain

$$I_n = [x^n e^x]_0^1 - \int_0^1 nx^{n-1} e^x dx = e - nI_{n-1}$$

as required.

It is easy to calculate that $I_0 = e - 1$, and then we deduce that $I_1 = 1$, $I_2 = e - 2$, and $I_3 = 6 - 2e$. [9]

Question 8:

Similar exercises have been covered for the sphere and the torus.

1. f satisfies the equation of the ellipse which we write

$$f(x)^2 = \frac{r^2}{2} \left(1 - \frac{(x-r)^2}{r^2} \right) ,$$

and since it describes the upper-half, we take to positive square root

$$f(x) = \frac{1}{\sqrt{2}}\sqrt{r^2 - (x - r)^2}$$
.

Finally, the full upper half ellipse is described when x runs from 0 to 2r.

[5]

2. We use the formula

$$A = \int_a^b 2\pi f(x) \sqrt{1 + \left(\frac{df}{dx}\right)^2} dx,$$

with f given above, a = 0 and b = 2r. So

$$A = \pi\sqrt{2} \int_0^{2r} \sqrt{r^2 - (x - r)^2} \sqrt{1 + \left(\frac{-(x - r)}{\sqrt{2}\sqrt{r^2 - (x - r)^2}}\right)^2} dx$$
$$= \pi\sqrt{2} \int_0^{2r} \sqrt{r^2 - (x - r)^2 + \frac{(x - r)^2}{2}} dx$$
$$= \pi\sqrt{2} \int_0^{2r} \sqrt{r^2 - \frac{(x - r)^2}{2}} dx$$

[6]

3. We use the change of variables $x-r=r\sqrt{2}\sin u$ which yields $dx=r\sqrt{2}\cos udu$ and the following bounds. When $x=0\sin u=-\frac{\sqrt{2}}{2}$ so $u=-\frac{\pi}{4}$. When x=2r, we obtain similarly $u=\frac{\pi}{4}$.

[4]

So we can write

$$A = \pi \sqrt{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{r^2 (1 - \sin^2 u)} \, r \sqrt{2} \cos u \, du$$

$$= 2\pi r^2 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2 u \, du = 2\pi r^2 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1 + \cos 2u}{2} \, du$$

$$= \pi r^2 \left[u + \frac{\sin 2u}{2} \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}.$$

Hence

$$A = \pi r^2 \left(\frac{\pi}{2} + 1\right) .$$

[11]

Question 9:

1. From $h(x) = \frac{1}{f^2(x)}$ we get

$$\frac{dh}{dx} = -2\frac{f'}{f^3}$$

and inserting in

$$\frac{2}{f^3}f' + \frac{1}{f^2} = x - 1.$$

it becomes

$$-h' + h = x - 1,$$

or

$$h' - h = 1 - x.$$

This a linear first order ODE which can be solved using the integrating factor technique. The latter is e^{-x} here so

$$h(x) = e^x \left[\int (1-x)e^{-x} dx + C \right],$$

where C is a constant. Integration by parts give

$$\int xe^{-x} dx = -xe^{-x} + \int e^{-x} dx = -e^{-x}(1+x).$$

So

$$h(x) = e^x \left[-e^{-x} + e^{-x}(1+x) + C \right] = x + Ce^x$$
,

Finally, an expression for f is

$$f(x) = \frac{1}{\sqrt{x + Ce^x}},$$

whenever this makes sense.

[13]

2. First we find the general solution of the homogeneous equation

$$f'' + 8f' + 25f = 0.$$

The auxiliary equation is $r^2 + 8r + 25 = 0$ with complex conjugate roots $-4 \pm 3i$. So we get

$$f(x) = e^{-4x} (A\cos 3x + B\sin 3x).$$

Now we look for a particular solution of the complete equation

$$f'' + 8f' + 25f = 48\cos x - 16\sin x,$$

in the form $f(x) = \alpha \cos x + \beta \sin x$. Inserting

$$-\alpha\cos x - \beta\sin x + 8(-\alpha\sin x + \beta\cos x) + 25(\alpha\cos x + \beta\sin x) = 48\cos x - 16\sin x.$$

Matching the coefficients give $24\alpha + 8\beta = 48$ and $24\beta - 8\alpha = -16$ with solution $\alpha = 2$ and $\beta = 0$. Collecting everything, the general solution of the complete equation is

$$f(x) = e^{-4x} (A\cos 3x + B\sin 3x) + 2\cos x.$$

[13]