## Maths for Actuarial Science Answers, 2010

## Paper 1 Section A

**Question 1:** We have  $\cosh^2 x - \sinh^2 x = 1$ , and so must solve

$$\cosh^2 x + 9 = 6\cosh x.$$

Rearranging this becomes

$$(\cosh x - 3)^2 = 0$$

and so  $\cosh x = 3$ .

We have

$$\cosh^{-1}(u) = \ln(u + \sqrt{u^2 - 1})$$

and so  $\cosh^{-1}(3) = \ln(3 + \sqrt{8})$ . As  $\cosh(x)$  is an even function, the set of solutions is

$$x = \pm \ln(3 + \sqrt{8}).$$

[3]

[2]

[5]

## Question 2:

(a) The Taylor series of f about c is given by

$$T(f,c) = \sum_{i \ge 0} \frac{f^{(i)}(c)}{i!} (x-c)^i.$$

(b) Let  $f(x) = x^2 \ln x$ . Then

$$f'(x) = 2x \ln x + x$$
  $f''(x) = 2 \ln x + 3$   $f'''(x) = \frac{2}{x}$ .

Therefore

$$f(1) = 0$$
,  $f'(1) = 1$   $f''(1) = 3$   $f'''(1) = 2$ .

Substituting we obtain

$$T(f,c) = (x-1) + \frac{3}{2}(x-1)^2 + \frac{1}{3}(x-1)^3.$$

[6]

## Question 3:

(a) Let  $u = x^2$  and  $\frac{du}{dx} = e^{-2x}$ . Then

$$\int x^2 e^{-2x} dx = -\frac{x^2 e^{-2x}}{2} + \int x e^{-2x} dx$$

$$= -\frac{x^2 e^{-2x}}{2} - \frac{x e^{-2x}}{2} + \int \frac{e^{-2x}}{2} dx$$

$$= -\frac{x^2 e^{-2x}}{2} - \frac{x e^{-2x}}{2} - \frac{e^{-2x}}{4} + C.$$

(b) Let  $u = \sqrt{3x+2}$ , so  $\frac{dx}{du} = \frac{2u}{3}$ . Then

$$\int \frac{3x}{\sqrt{3x+2}} dx = \int \frac{u^2 - 2}{u} \frac{2}{3} u du$$
$$= \frac{2}{3} \left( \frac{1}{3} u^3 - u \right) + C = \frac{2}{9} (3x-1)\sqrt{3x+2} + C.$$

Question 4:

(a) We have  $\cosh 0 - e^0 \cos 0 = \sin(x) = 0$ . So l'Hospital's rule implies that the limit is

$$\lim_{x \to 0} \left( \frac{\sinh x - (e^x \cos x - e^x \sin x)}{3 \cos 3x} \right) = -\frac{1}{3}.$$
 [4]

[4]

[4]

[4]

(b) We have

$$\lim_{x \to \infty} \left( \frac{5x^2 + 3x - 7}{2 - 3x^2} \right) = \lim_{x \to \infty} \left( \frac{5 + 3/x - 7/x^2}{2/x^2 - 3} \right) = -\frac{5}{3}.$$
 [4]

Question 5:

$$I_n = \int_0^{\pi} x^n \cos x \, dx$$

$$= [x^n \sin x]_0^{\pi} - \int_0^{\pi} nx^{n-1} \sin x \, dx$$

$$= 0 + [nx^{n-1} \cos x]_0^{\pi} - \int_0^{\pi} n(n-1)x^{n-2} \cos x \, dx$$

$$= -n\pi^{n-1} - n(n-1)I_{n-2}$$

2

$$I_{6} = -6\pi^{5} - 30I_{4}$$

$$= -6\pi^{5} - 30(-4\pi^{3} - 12I_{2})$$

$$= -6\pi^{5} + 120\pi^{3} + 360I_{2}$$

$$= -6\pi^{5} + 120\pi^{3} + 360(-2\pi - 2I_{0})$$

$$= -6\pi^{5} + 120\pi^{3} - 720\pi$$

as  $I_0 = 0$ . [4]

# Question 6:

Integrating factor is:

$$I = e^{2\int \tan x dx} = e^{-2\ln|\cos x|} = \sec^2 x$$

[4]

Therefore, after multiplying both sides of our equation by I we can write the equation in the form:

$$\frac{d}{dx}(y\sec^2 x) = \sec x \tan x$$

Integrating gives

$$y\sec^2 x = \sec x + c$$

Rearranging yields

$$y = \cos x + c \cos^2 x$$

[4]

#### Section B

### Question 7:

(a) We have

$$\sin(5\theta) = \cos\left(\frac{\pi}{2} - 5\theta\right)$$

and so must solve

$$\cos(7\theta) = \cos\left(\frac{\pi}{2} - 5\theta\right).$$

This has general solution

$$7\theta = 2n\pi \pm \left(\frac{\pi}{2} - 5\theta\right)$$

with  $n \in \mathbb{Z}$ . Rearranging we obtain

$$\theta = \frac{n\pi}{6} + \frac{\pi}{24}$$
 or  $\theta = n\pi - \frac{\pi}{4}$ 

with  $n \in \mathbb{Z}$ .

(b)  $y = \tan^{-1} x$  for  $x \in \mathbb{R}$  if and only if  $x = \tan y$  with

$$-\frac{\pi}{2} < y < \frac{\pi}{2}.$$

[3]

8

(c) Let  $\alpha=\tan^{-1}a$  and  $\beta=\tan^{-1}b$ , so  $-\frac{\pi}{2}<\alpha,\beta<\frac{\pi}{2}$  and  $\tan\alpha=a$  and  $\tan\beta=b$ . We have

$$\frac{a+b}{1-ab} = \frac{\tan\alpha + \tan\beta}{1-\tan\alpha \tan\beta} = \tan(\alpha+\beta) = \tan(\alpha+\beta+n\pi)$$

(for all  $n \in \mathbb{Z}$ ). Now  $\tan^{-1}\left(\frac{a+b}{1-ab}\right)$  must lie between  $-\frac{\pi}{2}$  and  $\frac{\pi}{2}$ , and equal  $\alpha + \beta + n\pi$ , for some value of n. But by our assumption we have n = 0. [6] (d) If the assumption is not satisfied then the righthand side of the equality must be modified to put it in the right range of values (i.e. we do not have n = 0 in the above argument).

(e) Let  $y = \tan^{-1}(x/a)$ . Then  $x/a = \tan(y)$  and so

$$\frac{1}{a} = \sec^2(y) \frac{\mathrm{d}y}{\mathrm{d}x}.$$

Therefore

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{a\sec^2 y} = \frac{1}{a(1+\tan^2 y)} = \frac{1}{a(1+x^2/a^2)} = \frac{a}{(a^2+x^2)}$$

and hence

$$\int \frac{a}{(a^2 + x^2)} dx = \int \frac{\mathrm{d}y}{\mathrm{d}x} dx = y + C.$$
 [7]

[5]

## Question 8:

$$f_x = 3x^2 - 4x + 3y$$
 and  $f_y = 3y^2 + 3x - 4y$ .  $f_{xx} = 6x - 4$ ,  $f_{yy} = 6y - 4$  and  $f_{xy} = 3$ .

At stationary point  $f_x = f_y = 0$  and so, subtracting  $f_y$  from  $f_x$  we obtain:

$$3(x^2 - y^2) - 7(x - y) = 0$$

or

$$3(x-y)(x+y-7/3)=0$$

so either x = y or x + y = 7/3.

The latter is not possible since y = 7/3 - x gives

$$f_x = 3(x - 7/6)^2 + \frac{35}{12}$$

so  $f_x > 0$ . Therefore we must have x = y. This gives  $f_x = f_y = 3x^2 - x = x(3x - 1) = 0$  and so x = 0 or x = 1/3. So stationary points are (0,0) and (1/3, 1/3).

At (0,0):  $f_{xx}f_{yy} - f_{xy}^2 = 7$  i.e  $f_{xx}f_{yy} - f_{xy}^2 > 0$  and  $f_{xx} = -4 < 0$  and so this is a maximum at which f = 0. At (1/3, 1/3):  $f_{xx}f_{yy} - f_{xy}^2 = -5$  i.e  $f_{xx}f_{yy} - f_{xy}^2 < 0$  and  $f_{xx} = -4 < 0$  and so this is a saddle point at which f = -1/27.

#### Question 9:

(a) Seek solutions of the form  $y e^{\lambda x}$ . We get the auxiliary equation:

$$\lambda^2 - 2\lambda + 5 = 0$$

So  $\lambda_1, \lambda_2 = 1 \pm 2i$ . Therefore,

$$y = Ae^{1+2x} + Be^{1-2x}$$

This can be written as

$$y = e^x (C\cos(2x) + D\sin(2x))$$

$$(b=2).$$
 [5]

(b) First seek solutions of form  $y e^{\lambda x}$ . We get the auxiliary equation:

$$\lambda^2 - 2\lambda + 1 = 0.$$

In this case we have repeated roots. Therefore the solution to the homogenous equation is:

$$y_h = Ae^x + Bxe^x$$

[5]

We now seek  $y_p$  of the form  $y_p = ax^2e^x$ : Substituting into the equation we get

$$a(2e^x + 4xe^x + x^2e^x) - 2a(2xe^x + x^2e^x) + a(x^2e^x) = e^x$$

giving a = 1/2

$$y_p = \frac{1}{2}x^2e^x$$

therefore

$$y = y_h + y_p$$
$$= Ae^x + Bxe^x + \frac{1}{2}x^2e^x$$

[5]

Now apply boundary condition y(0)=1 gives 1=A To apply the second boundary condition we need:  $y'=Ae^x+B(1+x)e^x+e^x(2x+x^2)$  Now y'(0)=0 so 0=A+B so B=-1 Hence

$$y = e^x - xe^x + \frac{1}{2}x^2e^x$$

[5]