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1. Consider the following second order differential equation

ẍ+ ẋ+ αx3 = 0 for α ∈ R+ .

(i) Find a suitable transformation of variables which changes the equa-

tion into a system of two first order differential equations.

(ii) Determine the fixed point of the system. State the linearization the-

orem and judge whether it is possible to draw conclusions from it

concerning the stability of the fixed point.

(iii) Take the function

V (x1, x2) = βx41 + γx22 for β, γ ∈ R+

as a candidate for a Lyapunov function. Find a relation between

the parameters α, β and γ such that V (x1, x2) is a weak Lyapunov

function. State the Lyapunov stability theorem and deduce from it

the stability properties for the fixed point.

(iv) State the extension of the Lyapunov stability theorem and deduce

from it the stability properties for the fixed point.

2. Consider the dynamical system of the form

ẋ1 = x2 + x1(α− βx21 − βx22) for α, β ∈ R+, |β − α| < 2
ẋ2 = −x1 + βx2(1− x21 − x22) .

(i) Determine the nature of the fixed point at the origin.

(ii) Change the variables of the system to polar coordinates, using the

conventions x1 = r cosϑ and x2 = r sinϑ. Deduce from the equation

for ϑ̇ that the origin is the only fixed point.

(iii) State the Poincaré-Bendixson theorem. Take from now on α = 2 and

β = 3 and employ the theorem to conclude that the system has at

least one limit cycle in the annular region

D =
n
(r, ϑ) : 1/

√
3 ≤ r ≤ 2

o
.

(iv) Determine some values rmin = 1/
√
3 and rmax = 2 such that the above

conclusions also hold in the smaller annular region

D̃ = {(r, ϑ) : rmin ≤ r ≤ rmax} .
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3. Consider the dynamical system of the form

ẋ1 = (λ− 1)x1 + x2 + λx21 + 2x1x2 + x21x2

ẋ2 = −λx1 − x2 − 2x1x2 − λx21 − x21x2 .

(i) Determine the nature of the fixed point at the origin for the linearized

system depending on the values of λ. Can the linearization theorem

be applied for λ = 2?

(ii) Use the stability index
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to argue that the origin is asymptotically stable for λ = 2, where the

abbreviations Y i
jk = ∂2Yi/∂yj∂yk, Y i

jkl = ∂3Yi/∂yj∂yk∂yl have been

used. Carry out a similarity transformation on the Jacobian matrix,

which brings it into the Jordan normal form

J =

µ
0 ω
−ω 0

¶
for ω ∈ R+ .

The y are the variables related to x through the similarity transfor-

mation.

(iii) State the Hopf bifurcation theorem and use it to prove that for λ = 2

the system possesses a Hopf bifurcation.

4. Consider the two dynamical systems of the form

ẋ1 = x2 ẋ2 = −x41 + x1 ,

ẋ1 = x21 + x2 ẋ2 = x31 + 2x2 .

(i) Provide an argument (without explicit proof), which confirms that

the first system is a set of equations of motion for a Hamiltonian

system, whereas the second is not.

(ii) Find the Hamiltonian function and confirm that the system is also a

potential system. Determine the potential and sketch it. Exploit the

fact that the system is a potential system to deduce the position and

the nature of the fixed points.
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(iii) Sketch the phase portrait by drawing some representative trajecto-

ries. Determine the equation for the separatrices, include it in the

phase portrait and indicate the regions where ẋ1 > 0 and ẋ2 > 0.

5. Consider the following difference equation

xn+1 = F (xn) = λ(1− αx2n) for α, λ ∈ R+

α is taken to be a fixed constant and λ the bifurcation parameter.

(i) Determine the nature of the fixed points and their stability depending

on the values of λ.

(ii) From the defining relation for a 2-cycle derive that they are deter-

mined by the solutions of

1− αxλ− αλ2 + α2λ2x2 = 0 .

Take from now on α = 1/2 and argue that the existence of a 2-cycle

requires λ >
p
3/2.

(iii) Show that the domain of stability is
p
3/2 < λ <

p
5/2.

(iv) Sketch the bifurcation diagram.
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