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1. Introduction

1.1 The notion of a dynamical system

Let us start by assembling some general notions and concepts to make the subject we are

dealing with precise.

Definition: A dynamical system describes the evolution of some quantities x1, x2, . . . , xn,

whose meaning will be specified later, of a physical, chemical, biological, economical etc.

system as a function of time t or a similar variable (temperature T , number density ρ, . . .)

For the time being we take the variable to be usually t, keeping however in mind that it

could be more general or something else. The central question for a dynamical system is

then to determine how a particular state of the system evolves in time subject to some

specific rules and what kind of solutions these rules allow. More precisely:

Definition: The state of a system is described by a collection of continuous (or discrete)

parameters at a particular time, say t0, as x1(t0), x2(t0), . . . , xn(t0).

Definition: The space χ(t, �x) of all possible states is a subspace of the Euclidean space,

called the phase space (or state space).

Definition: The law of evolution (or equation of motion) in time can predict χ(t, �x), if

we know some initial state χ(t0, �x0).

Mathematically the law of evolution can be algebraic, functional, a differential equation,

an integral equation or a mixture of them. In general terms the law of evolution is a map

from the phase space into itself π(t1, t0) : χ→ χ evolving the system from some time t0 to

another time t1obeying the properties for two consecutive compositions

π(t2, t1) ◦ π(t1, t0) = π(t2, t0), (1.1)

π(t0, t0) = I. (1.2)

The first equation (1.1) indicates that if we use the law of evolution to evolve the system

from some time t0 to another time t1 and subsequently from t1 to t2, the direct evolution
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from t0 to t2 gives the same result. The second equation (1.2) states that when we evolve

from t0 to the same time t0 the map simply reduces to the identity map I. Mostly one also

assumes that the evolution map only depends on the difference of the initial and final time,

denoted as t := t1− t0, such that one can abbreviate π(t1, t0) =: πt. With this assumption

and the specified notations the equations (1.1) and (1.2) simplify to

πs ◦ πt = πs+t, (1.3)

π0 = I . (1.4)

Having now a rough general idea of what dynamical systems are, we briefly comment on

how the manner this subject has developed over the years.

1.2 Historical Remarks

The beginning of the subject can be traced back to ancient astronomy, when people started

to try to “explain” the motion of planets. The first qualitative investigation were carried

out in the middle ages.

In the 17-th century Kepler and Galilei brought the subject

Figure 1: Newton

forward by their observations. At the end of the 17-th century New-

tonian mechanics provided the theoretical explanation of Kepler’s

and Galilei’s observations. The first analytical methods were devel-

oped thereafter by Euler, Lagrange, Laplace, Hamilton and Jacobi.

The end of the 18-th and the entire 19-th century was dominated

by trying to solve the three-body problem. Bruns and Poincaré

found that the three-body problem can not be solved with standard

methods, which led to a crisis of the entire subject. The contribu-

tion of Lyapunov was to introduce a new point of view. Instead

of seeking explicit solutions for a dynamical system, he developed the theory of stability.

In 1927 Birkhoff developed topological dynamics. In 1937 Andronov and Pontryagin in-

vented structural stability. The so-called Lefschetz School was concerned with the study of

the nonlinear oscillator. Smale invented differentiable dynamical systems. Further impor-

tant contributions were made by Hopf, Hedlund, Sinai, Bowen, Thom, Ruelle and many

more authors. Only as late as 1960 the crisis concerned with the three-body problem was

overcome, when Kolmegorov, Arnold and Moser showed that there exist quasi-periodic

solutions to the n-body problem, which guarantee the stability of the solar system.

2. Linear systems, preliminary notions

2.1 Solutions, Phase portraits, fixed points, qualitative behaviour

In general we consider dynamical systems of the form

�̇x = �F (�x) . (2.1)

Here the dot denotes a time derivative, i.e. ẋ = dx/dt, �F is a map (a vectorfield) Rn → R
n

and �x is an n-dimensional vector, i.e. �x = (x1, x2, . . . , xn). (In this course we will not
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make a pendantic distinction between column and row vectors.) Alternatively we can

write equation (2.1) in components as

ẋi = Fi(�x) = Fi(x1, x2, . . . , xn) for 1 ≤ i ≤ n. (2.2)

We are particularly interested in the case n = 2 (see section 3

Figure 2: A trajectory in

the phase plane.

of the course) and restrict very frequently our discussion to that

particular case.

Definition: A solution for the system (2.1) is a set of functions

{x1(t), x2(t), . . . , xn(t)} satisfying (2.1) for a given vectorfield
�F .

The solution can be depicted in a phase plane, see figure 1. The

arrow indicates the direction of time. We call a particular line

a trajectory. A collection of such curves constitutes a phase

portrait. For many general considerations it is enough to study

the qualitative behaviour, which means the precise numbers are

not relevant in that context. Often they are also not available since the system can not be

solved explicitly.

Definition: A solution x(t) = xf of (2.1) which stays the same for all time is called a

fixed point.

For a fixed point we therefore have the relations

�̇x(t) = �xf = �F (�xf ) = 0. (2.3)

Let us consider an easy example to illustrate all the notions and definitions just intro-

duced

ẋ1 = −x1 and ẋ2 = −x2. (2.4)

We may easily solve these equations separately by

xi(t) = ki exp(−t) with i = 1, 2, ki ∈ R. (2.5)

The origin is clearly a fixed point which follows directly with

Figure 3: Phase portrait

for the system (2.4).

properties (2.3). Dividing the two equations in (2.5) we obtain

x1 = k1/k2x2, which means the trajectories are straight lines in

the x1/x2-plane. At the moment we do not have any information

on the direction of time. To obtain this we can study the limit

of time going to infinity

lim
t→∞

xi(t) = lim
t→∞

ki exp(−t) = 0, (2.6)

which means the fixed point will be reached in the infinite future.

This implies that all time directions point towards the origin.

Assembling all this information we obtain the phase portrait as depicted in figure 3.

— 3 —
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2.2 Linear systems

The main concern of this course will be non-linear systems, but to start with we need to

have a good understanding of linear systems, which in many cases serve as a very good

benchmark.

Definition: In case the map �F in (2.1) is linear in x1, x2, . . . , xn the dynamical system

is called a linear dynamical system.

This means the system acquires the simpler form

�̇x = �F (�x) = A�x , (2.7)

with A being an n × n-matrix with constant entries, i.e. Aij =const for 1 ≤ i, j ≤ n.

Furthermore,

Definition: A linear system is called simple, if A is non-singular, i.e. detA 	= 0 and A

has non-zero eigenvalues.

Linear systems have some very useful properties:

Proposition: The only fixed point of a simple linear system is the origin.

Proof: We show this for n = 2 : Taking for this purpose the matrix A to be in the most

general form with arbitrary constants entries a, b, c, d ∈ R, equation (2.7) for the fixed point
becomes

�F (�xf ) = A�xf =

(
a b

c d

)(
x1
x2

)

= 0. (2.8)

From this follows

ax1 + bx2 = 0⇔ x1 = −b/ax2
cx1 + dx2 = 0⇔ x1 = −d/cx2

}

⇒ (detA)x2 = 0 (2.9)

Since the determinant of A is non-vanishing we conclude from the last equality in (2.9)

that x2 = 0. A similar argument leads to x1 = 0. As there are no further solutions to

(2.8), the only fixed point of this linear system is the origin �.

2.2.1 Change of variables, similarity classes

An important concept and technique is to change the variables �x to some new set of

variables �y. We achieve this via the transformation

�x = U�y with Uij ∈ R 1 ≤ i, j ≤ n. (2.10)

Substituting this expression into the equation for the linear system (2.7), it the follows that

U�̇y + U̇�y = AU�y. (2.11)

Assuming that the inverse U−1 of U exists, together with the fact that U̇ = 0, we obtain

from (2.11) a new linear system

�̇y = B�y =: �Y (�y) with B = U−1AU. (2.12)
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Therefore we conclude that if two matrices A and B are in the same similarity class

(equivalence class), i.e. related by a similarity transformation B = U−1AU , the solutions

to their corresponding linear systems can be obtained from each other simply by relating

the corresponding variables according to (2.10).

We recall now an important fact: The set of all n×n-matrices can be decomposed into

a finite set of similarity classes. We can use these classes to characterize the solutions of

the corresponding linear systems as all members belonging to one particular class exhibit

the same qualitative behaviour.

We present this here for the case n = 2. When starting with a matrix A we have to

bring it first into the Jordan form by means of a similarity transformation J = U−1AU . It

is then sufficient to discuss the qualitative behaviour for all possible systems related to the

J ’s, which are completely determined by their eigenvalues. For a generic 2× 2-matrix we

compute the eigenvalues from the characteristic equation

det

(
a− λ b

c d− λ

)

= λ2 − λad+ ad− bc = λ2 − λ trA+ detA = 0, (2.13)

which means the two eigenvalues are

λ± =
1

2

(
trA±

√
∆
)

with ∆ = (trA)2 − 4 detA. (2.14)

There are precisely ten different cases (similarity classes), whose qualitative behaviour we

list at first without any proof. The possibilities are

∆ > 0 ≡ real eigenvalues J =

(
λ+ 0

0 λ−

)

i) λ+ > λ− > 0 ≡ unstable node

ii) λ− < λ+ < 0 ≡ stable node

iii) λ− < 0 < λ+ ≡ saddle point

∆ = 0 ≡ equal eigenvalues

diagonal J :

iv) λ0 > 0 ≡ unstable star node

v) λ0 < 0 ≡ stable star node

non-diagonal J :

vi) λ0 > 0 ≡ unstable improper node

vii) λ0 < 0 ≡ stable improper node
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∆ < 0 ≡ complex eigenvalues J =

(
α −β
β α

)

, α ∈ R, β ∈ R+, λ± = α± iβ

viii) α > 0 ≡ unstable focus

ix) α = 0 ≡ centre

x) α < 0 ≡ stable focus

See figure 4 for the relevant phase portraits.

We can organize the ten cases into four basic groups: stable: {ii), v), vii), x)}, unstable:
{i), iv), vi), viii)}, saddle: {iii)} and centre:{ix)}.
Proof: Here we prove the qualitative behaviour only for the two cases i) and ii). First we

need to show that J is of diagonal form. From the eigenvalue equation

A�v± = λ±�v± with λ+ 	= λ− (2.15)

we construct a matrix U which consists of the eigenvectors of A as column vectors

U = (�v+, �v−). (2.16)

Then we compute

AU = (A�v+, A�v−) = (λ+�v+, λ−�v−) = UJ. (2.17)

Since λ+ 	= λ− the two eigenvalues �v+ and �v− are linearly independent, such that the

matrix U is nonsingular, i.e. detU 	= 0. Therefore the inverse U−1 exists, such that

J = U−1AU =

(
λ+ 0

0 λ−

)

. (2.18)

Next we consider the dynamical system produced by the matrix J

(
ẏ+
ẏ−

)

=

(
λ+ 0

0 λ−

)(
y+
y−

)

, (2.19)

which is evidently solved by

y± = k±e
λ±t, (2.20)

such that

y− = k−(y+/k+)
λ+/λ− . (2.21)

Clearly if λ+ > λ− > 0 we obtain from this the phase portrait for case i) and when

λ− < λ+ < 0 we obtain the phase portrait for case ii). Similar arguments hold for the

remaining cases iii)-x), which we leave as exercises.
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Figure 4: Phase portraits for the ten different equivalence classes.
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We conclude this section by assembling some more useful terminology:

Definition: A separatrix is a trajectory which divides the phase space into regions with

distinctly different types of qualitative behaviour. It crosses a fixed point tangentially to a

fixed radial direction. A stable (unstable) separatrix approaches (leaves) the fixed point for

increasing time.

Definition: The directions of the straight line separatrix are called principal directions.

They are the eigenvectors of the linear system A.

Definition: An isocline is a curve in phase space on which the trajectories have constant

gradient, i.e.
dx2
dx1

=
ẋ2
ẋ1

=
F2(x1, x2)

F1(x1, x2)
= κ ∈ R. (2.22)

In particular we have κ = 0 for F2(x1, x2) = 0 and κ → ∞ for F1(x1, x2) = 0. The

separatrices, isoclines and principle directions can be used to include information into the

phase portrait without knowing the explicit solution.

3. Analysis of nonlinear second order differential equations

Consider a linear second order differential equation of the general form

ẍ+ aẋ+ bx+ c = 0, a, b, c ∈ R. (3.1)

Introducing the new variables

x1 := x and x2 := ẋ, (3.2)

the equation (3.1) is converted into a set of coupled first order differential equations

ẋ1 = x2, (3.3)

ẋ2 = −ax2 − bx1 − c, (3.4)

which is called the standard form of the second order differential equation (3.1). Notice

that this is easily extended to nonlinear second order differential equations of the form

ẍ+

p∑

n=0

q∑

m=0

anmẋ
nxm = 0, anm,∈ R, p, q ∈ N. (3.5)

For a00 = c, a10 = a and a01 = b the equation (3.5) reduces to (3.1). Using the same

parameterization as in (3.2) the nonlinear second order differential equation (3.5) converts

into a set of two coupled first order nonlinear differential equations

ẋ1 = x2, (3.6)

ẋ2 = −
p∑

n=0

q∑

m=0

anmxn2x
m
1 . (3.7)

This is one of the main motivations why we are interested in n = 2 of the system (2.1).

— 8 —
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3.1 Linearization at a fixed point

Let us now focus on a dynamical system with n = 2, that is

ẋi = Fi(x1, x2) for 1 ≤ i ≤ 2. (3.8)

with the additional assumption that the functions Fi(x1, x2) are continuously differentiable

in some neighbourhood of the point (x01, x
0
2). We can now carry out a Taylor expansion

about the point (x01, x
0
2)

Fi(x1, x2) = Fi(x
0
1, x

0
2) + (x1 − x01)

∂Fi(x
0
1, x

0
2)

∂x1
+ (x2 − x02)

∂Fi(x
0
1, x

0
2)

∂x2
+Ri(x1, x2). (3.9)

In order to ensure convergence of the series we make the following assumption on the

remainder function Ri(x1, x2)

lim
r→0

Ri(x1, x2)

r
= 0 for r =

√
(x1 − x01)

2 + (x2 − x02). (3.10)

Taking now (x01, x
0
2) to be a fixed point for the system (3.8), we can re-write (3.9) as

ẋi = (x1 − x01)
∂Fi(x01, x

0
2)

∂x1
+ (x2 − x02)

∂Fi(x01, x
0
2)

∂x2
+Ri(x1, x2). (3.11)

Next we introduce the new variable yi = xi− x0i , such that (3.11) becomes a Maclaurin

expansion

ẏi = y1
∂Fi(x

0
1, x

0
2)

∂x1
+ y2

∂Fi(x
0
1, x

0
2)

∂x2
+Ri(y1 + x01, y2 + x02). (3.12)

Neglecting now Ri, the system (3.12) constitutes the linearization of the system (3.8) at

the fixed point �xf = (x01, x
0
2), i.e. we can write the system as

�̇y = A�y with A =

(
∂X1
∂x1

∂X1
∂x2

∂X2
∂x1

∂X2
∂x2

)∣∣∣∣∣
�xf=(x

0
1
,x0
2
)

. (3.13)

Here A is the Jacobian matrix of the vectorfield �F in �xf = (x01, x
0
2).

3.1.1 Examples for linearizations

In order to exemplify the working of the above concept let us consider two examples:

i) Find the linearization for the dynamical system

ẋ1 = x22 + sinx1 − a2 a ∈ R (3.14)

ẋ2 = sinh(x2 − a). (3.15)

Solution: The fixed points are found by setting the right hand sides of (3.14) and (3.15)

to zero, which means we have to solve

sinh(x2 − a) = 0 ⇒ x2 = a, (3.16)

— 9 —
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substituting this into (3.14) gives

sinx1 = 0 ⇒ x1 = nπ. (3.17)

Therefore we find an infinite amount of fixed points �x
(n)
f = (nπ, a).

To obtain the linearization, we compute first the Jacobian matrix from (3.13)

A(x1, x2) =

(
cosx1 2x2

0 cosh(x2 − a)

)

⇒ A(�x
(n)
f ) =

(
(−1)n 2a

0 1

)

. (3.18)

Recalling that �̇y = A�y, we obtain the following linearization for the system (3.14),

(3.15)

ẏ
(n)
1 = (−1)ny(n)1 + 2ay

(n)
2 (3.19)

ẏ
(n)
2 = y

(n)
2 , (3.20)

where y
(n)
1 = x1 − nπ, y

(n)
2 = x2 − a.

ii) At the origin find the linearization for the dynamical system

ẋ1 = x51 exp(2x2) (3.21)

ẋ2 = x2[exp(4x1)− 1] (3.22)

Solution: Clearly the origin is a fixed point �xf = (0, 0).

To obtain the linearization, we compute the Jacobian matrix

A(x1, x2) =

(
5x41e

2x2 2x51e
2x2

4x2e
4x1 e4x1 − 1

)

⇒ A(�xf ) =

(
0 0

0 0

)

. (3.23)

We observe that this yields a non-simple linearization, i.e. detA = 0, which demon-

strates some of the limitations of the linearization procedure. The linearized system

at the fixed point is now simply ẋ1 = ẋ2 = 0.

To make these observations more precise we discuss now the linearization theorem.

3.2 The linearization theorem

In the previous section we have seen how a nonlinear system may be approximated in form

of a linear system near a fixed point. The following theorem will make it more precise what

type of information we can extract from the linear system for the nonlinear one.

Linearization theorem: Consider a nonlinear system which possesses a simple lineariza-

tion at some fixed point. Then in a neighbourhood of the fixed point the phase portraits of

the linear system and its linearization are qualitatively equivalent, if the eigenvalues of the

Jacobian matrix have a nonzero real part, i.e. the linearized system is not a centre.

Proof: The proof is omitted here1.

1See e.g. P. Hartman, Ordinary differential equations, (Wiley, New York 1964)
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Comments: The linearization theorem constitutes the basis for stability analysis. The

theorem does not apply for nonsimple systems, i.e. detA = 0, and those for which the

eigenvalues λ1/2 of A are purely imaginary, i.e. λ1/2 ∈ iR.

The notion of qualitative equivalence includes:

- the classification of the fixed point as stable or unstable

- the classification of the fixed points as nodes, foci or saddle points

- the direction in which the trajectories run in or out of the fixed point

3.2.1 Examples for linearization theorem

We discuss now three examples i) a “good” one for which the linearization theorem can be

applied, and two related to the exemptions of the theorem ii) one for which the eigenvalues

of J are purely imaginary, which therefore can not be analyzed by means of the linearization

theorem and iii) one which possesses a nonsimple linearization, such that also in this case

no information can be extracted from the linearization theorem.

i) Find the linearization for the dynamical system

ẋ1 = x1 + 4x2 + exp(x1)− 1 (3.24)

ẋ2 = −x2 − x2 exp(x1) (3.25)

at the origin.

Solution: Clearly the origin is a fixed point �xf = (0, 0).

To obtain the linearization, we compute the Jacobian matrix

A(x1, x2) =

(
1 + ex1 4

−x2ex1 −(ex1 + 1)

)

⇒ A(�xf ) =

(
2 4

0 −2

)

. (3.26)

Let us first compute the eigenvalues for A from

det(A− λI) =

∣∣∣∣∣
2− λ 4

0 −2− λ

∣∣∣∣∣
= λ2 − 4 = 0 ⇒ λ± = ±2. (3.27)

Since we have two real eigenvalues of opposite sign, we expect a saddle point for the

linearized system at the origin. However, the matrix A is not quite in the Jordan

normal form and we have to perform a similarity transformation to achieve this. Only

in this way we can make a valid statement about the precise qualitative picture of

the original system (3.24) and (3.25). For this we seek a matrix U which solves the

equation

U−1AU = J =

(
λ+ 0

0 λ−

)

. (3.28)

— 11 —
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As discussed above we can take U = (�v+, �v−) for this purpose, where �v+, �v− are the

eigenvectors of A. We determine the eigenvectors2 from

A�v = ±2�v ⇒ �v+ =

(
1

0

)

, �v− =

(
1

−1

)

. (3.29)

and verify that indeed3

(
1 1

0 −1

)(
2 4

0 −2

)(
1 1

0 −1

)

=

(
2 0

0 −2

)

. (3.30)

Recalling now that

�̇x = A�x, �̇y = U−1AU�y = J�y, �x = U�y, (3.31)

we may find the phase portrait for the linearized system (3.24), (3.25) by transforming

the standard phase portrait related to the Jordan normal form (3.28). We may do this

by transforming some characteristic points, which we label by X0,. . . ,X5 as depicted

in the phase portraits of figure 4

X0 :

(
1 1

0 −1

)(
0

−a′

)

=

(
a′

−a′

)

, X1 :

(
1 1

0 −1

)(
−a′

a′

)

=

(
0

−a′

)

,

X2 :

(
1 1

0 −1

)(
−a′

−a′

)

=

(
−2a′

a′

)

, X3 :

(
1 1

0 −1

)(
a′

−a′

)

=

(
0

a′

)

,

X4 :

(
1 1

0 −1

)(
a′

a′

)

=

(
2a′

−a′

)

, X5 :

(
1 1

0 −1

)(
a′

0

)

=

(
a′

0

)

,

where we parameterize the points by a′ ∈ R. In this way we construct the phase
portraits in the (x1, x2)-plane from the one in the (y1, y2)-plane as depicted in figure

4.

We observe that �v+ and �v−, i.e. the eigenvectors of A, constitute an unstable sep-

aratrix and a stable separatrix, respectively. Next we compare the outcome of the

linearized system with the phase portrait of the nonlinear system which we depict in

figure 5. We observe that only in the neighbourhood of the origin the phase portraits

of the nonlinear system and its linearization are qualitatively equivalent. To see this

we look at the original nonlinear system (3.24), (3.25).

2Recall also that eigenvectors are only fixed up to an overall factor. This is easily seen as follows:

Multiply the eigenvalue equation A�v = λ�v by some constant κ

κA�v = κλ�v ⇒ Aκ�v = λκ�v ⇔ A�w = λ�w,

which means that the vector �w = κ�v is also an eigenvector of A to the same eigenvalue λ.

3Recall that for a general 2× 2-matrix U =

(
a b

c d

)

the inverse is computed to U = 1

detU

(
d −b

−c a

)

.
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Figure 5: Phase portraits for the linear systems �̇y = J�y and �̇x = A�x.
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Figure 6: Phase portraits for the nonlinear system (3.24)-(3.25) .

For x2 = 0 it follows ẋ2 = 0, which means that the unstable separatrix remains the

same in the nonlinear system. Next we investigate how the nonlinear system behaves

near the stable separatrix x2 = −x1. For this we compute the gradient a tiny bit

away from the line

dx2
dx1

=
ẋ2
ẋ1

=
−x2 − x2 exp(x1)

x1 + 4x2 + exp(x1)− 1
(3.32)

=
x1(1 + ex1)

−3x1 + ex1 − 1
for x2 = −x1 (3.33)

≈ x1(2 + x1)

−2x1
with ex1 ≈ (1 + x1) (3.34)

= −1− x1/2 (3.35)

=

{
> −1 for x1 < 0

< −1 for x1 > 0
(3.36)

This means near the origin the trajectory of the straight line is slightly bended down.
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ii) Find the linearization for the two dynamical systems (one for the + sign and one for

the − sign)

ẋ1 = −x2 ± x1(x
2
1 + x22) (3.37)

ẋ2 = x1 ± x2(x
2
1 + x22) (3.38)

at the origin.

Solutions: Once again it is easy to see that the origin is indeed a fixed point �xf = (0, 0).

To obtain the linearization, we compute the Jacobian matrix

A(x1, x2) =

(
±3x21 ± x22 −1± 2x1x2
1± 2x1x2 ±x21 ± 3x22

)

⇒ A(�xf ) =

(
0 −1
1 0

)

. (3.39)

The eigenvalues for A are computed as

det(A− λI) =

∣∣∣∣∣
−λ −1
1 −λ

∣∣∣∣∣
= λ2 + 1 = 0 ⇒ λ± = ±i. (3.40)

This means the eigenvalues of the Jacobian matrix at �xf have no real part and the

linearization theorem does not apply. The linearized system is of the type ix) in our

classification scheme, that is we have a centre near the origin. We further observe

that the linearization is the same for both systems independent of the chosen sign.

We recall that the phase portrait of a centre exhibits rotational symmetry, which

makes it suggestive to introduce polar coordinates

x1 = r cosϑ and x2 = r sinϑ. (3.41)

Differentiating this and on the other hand substitution into (3.37), (3.38) yields

ẋ1 = ṙ cosϑ− r sinϑϑ̇ = −r sinϑ± r3 cosϑ (3.42)

ẋ2 = ṙ sinϑ+ r cosϑϑ̇ = r cosϑ± r3 sinϑ. (3.43)

We easily read off that

ṙ = ±r3 and ϑ̇ = 1 (3.44)

solve (3.42) and (3.43). Note further that the different signs in (3.44) are not visible

in the linear system, i.e. r3 → 0, as we already saw. We conclude now from (3.44)

+sign: ṙ > 0 ∀ r > 0, ϑ̇ = const ⇒ trajectories spiral outwards as t→∞
−sign: ṙ < 0 ∀ r > 0, ϑ̇ = const ⇒ trajectories spiral inwards as t→∞

As ϑ̇ is positive the trajectories spiral in the positive mathematical sense (≡ anti-

clockwise). Therefore we deduce the qualitative behaviour as depicted in figure 6.

Note that we have been able to make these deductions simply from (3.44) and have

not applied the linearization theorem.
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Figure 7: Phase portraits for the nonlinear systems (3.37), (3.38).

iii) Find the linearization for the dynamical system

ẋ1 = x21 + 2x1x2 (3.45)

ẋ2 = x22 + 2x1x2 (3.46)

at the origin.

Solution: Clearly the origin is once again a fixed point �xf = (0, 0).

To obtain the linearization, we compute the Jacobian matrix

A(x1, x2) =

(
2x1 + 2x2 2x1

2x1 2x1 + 2x2

)

⇒ A(�xf ) =

(
0 0

0 0

)

. (3.47)

Therefore detA = 0, which means this is a nonsimple system and the linearization

theorem does not apply. Despite this we can make some observations and still obtain

a phase portrait: Clearly the linear system is xi(t) = ci for i = 1, 2 and ci ∈ R. The
system is symmetric around x1 = x2, which reduces the analysis by a factor 1/2. The

isoclines are computed as

dx2
dx1

=
x22 + 2x1x2
x21 + 2x1x2

=






0 for x2 = 0

∞ for x1 = 0

1 for x1 = x2.

(3.48)

Let us next see what happens near the line (x1, 0). Assuming for this that x2/x1 is

small we can write

dx2
dx1

=
(x2/x1)

2 + 2x2/x1
1 + 2x2/x1

=

[
x22
x21

+ 2
x2
x1

][

1− 2
x2
x1

+ 4

(
x2
x1

)2
+O
[(

x2
x1

)3]]

= 2
x2
x1
− 3

(
x2
x1

)2
+O
[(

x2
x1

)3]

.
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Near the line (0, x2) we assume for this that x1/x2 to be small such that we may

write

dx2
dx1

=
1 + x2/2x1
1 + x1/2x2

=

[
1 +

x2
2x1

][

1− x1
2x2

+

(
x1
2x2

)2
+O
[(

x1
2x2

)3]]

=
x2
2x1

+
3

4
− x1

2x2
+O
[(

x1
2x2

)3]

.

At the lines (−x1, x2) and (x1,−x2) we find

dx2
dx1

= −1. (3.49)

Next we determine the direction of time. Recall for this the simple example ẋ1 = −x1,

ẋ2 = −x2 which can be solved explicitly by xi(t) = ki exp(−t) with ki ∈ R and

i = 1, 2. Therefore in x2 = k2/k1x1 the information concerning the direction of time

is lost. We can either study the limit limt→∞ xi(t) or alternatively determine the

regions in which ẋi(t) < 0 or ẋi(t) > 0. Let us do this for the system (3.45), (3.46).

We determine the regions

ẋ1 > 0 ⇔ x1(x1 + 2x2) > 0
⇔ x1 > 0 ∧ x2 > −x1/2

⇔ x1 < 0 ∧ x2 < −x1/2

ẋ2 > 0 ⇔ x2(x2 + 2x1) > 0
⇔ x2 > 0 ∧ x2 > −2x1
⇔ x2 < 0 ∧ x2 < −2x

(3.50)

Assembling all this information we obtain the phase portrait of figure 8.
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Figure 8: Phase portraits for the nonlinear systems (3.45), (3.46).

3.3 Stability of fixed points

Let us now slightly enlarge the notion of stability of fixed points and also include into it

some information about the neighbourhood around it.
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Definition: A fixed point �xf of the system �̇x = �F (�x) is

Figure 9: Stability in the sense of

Lyapunov

said to be stable (in the sense of Lyapunov), if for every

neighbourhood N(�xf ) there exists a smaller neighbour-

hood N ′(�xf ) ⊆ N(�xf ), such that every trajectory which

passes though N ′(�xf ) remains in N(�xf ) as the time t

increases.

Definition: A fixed point �xf
˙

of the system �̇x = �F (�x)

is said to be asymptotically stable, if there exists a

neighbourhood N(�xf ) of �xf such that every trajectory

passing through N(�xf ) approaches �xf as t→∞.
Definition: A neutrally stable fixed point �xf is a fixed

point which is stable but not asymptotically stable.

Definition: An unstable fixed point �xf is a fixed point

which is not stable.

Some examples for these definitions are the following fixed points:

a) Stable nodes are asymptotically stable.

b) Unstable nodes are unstable fixed points.

c) Centres are neutrally stable.

We can deduce a) and b) from the linearization theorem, but not c)!

In the previous examples ii) and iii) we saw already that the linearization theorem is

only of limited use. As alternative method which can also be applied for these cases one

seeks so-called Lyapunov function. This method will also cover the treatment of nonsimple

fixed points and those which are centres. In addition, these functions will provide also

provide information which goes beyond the treatment of the isolated fixed point and yields

in also a domain of stability.

3.4 Lyapunov functions (stability theorem)

Before being very precise, we get first some intuitive understanding by looking at an exam-

ple: We saw already that the origin is a centre for the system in example ii), that is (3.37),

(3.38) and the linearization theorem can not be applied in that case. Now we consider a

function

V [�x(t)] = V [x1(t), x2(t)] = x21(t) + x22(t), (3.51)

depending on the solution �x(t) of the system (3.37), (3.38) and address the following

question: How does V change along the trajectories of this dynamical system? To see this

we compute

V̇ =
dV

dt
=

∂V

∂x1

dx1
dt

+
∂V

∂x2

dx2
dt

=
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2,

= 2x1
[
−x2 ± x1(x

2
1 + x22)

]
+ 2x2

[
x1 ± x2(x

2
1 + x22)

]
,

= ±2(x21 + x22)
2 =

{
> 0

< 0
for �x 	= (0, 0).
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Therefore we conclude for the plus sign that V [�x(t)] is an increasing function on any

trajectory and limt→∞ V → ∞. Since V [�x(t)] = |�x(t)|2 this means that �x(t) → ∞ for

t → ∞ such that the origin is an unstable fixed point. On the other hand, for the minus

sign we conclude that V [�x(t)] is a decreasing function on any trajectory and limt→∞ V → 0.

Therefore in this case we have �x(t) → 0 for t → ∞, which implies that now the origin is

an asymptotically stable fixed point. This behaviour is precisely what we have concluded

already before when we investigated this example. Let us make these observations more

rigorous. For this we need to define first a few notions.

Definition: A real valued function f(�x) is said to be positive (negative) definite in a

neighbourhood N(�x = 0) if

i) f(�x) = 0 and ii) f(�x)>0 ( f(�x)<0) for �x ∈ N(�x = 0)\�x = 0.

Definition: A real valued function f(�x) is said to be positive (negative) semi-definite in

a neighbourhood N(�x = 0) if

i) f(�x) = 0 and ii) f(�x)≥0 (f(�x)≤0) for �x ∈ N(�x = 0)\{�x = 0}.

We are now in the position to formulate the main theorem of this section:

Lyapunov stability theorem: Consider the system �̇x = �F (�x) with a fixed point at the

origin. If there exists a real valued function V (�x) in a neighbourhood N(�x = 0) such that:

i) the partial derivatives ∂V/∂x1, ∂V/∂x2 exist and are continuous,

ii) the function V (�x) is positive definite,

iii) dV/dt is negative semi-definite (definite),

then the origin is a stable (asymptotically stable) fixed point.

Proof: First we prove stability: From i) and ii) follows that the level curves of V form a

continuum of closed curves around the origin.

∴ ∃ a real number κ > 0 such that N ′ = {�x|V (�x) < κ} ⊆ N(�x = �0)

∴ it follows by iii) that if �x′ ∈ N ′\{0} then V̇ (ϕt(�x
′)) ≤ 0 ∀ t ≥ 04

∴ V̇ (ϕt(�x
′)) ≤ 0 is a non-increasing function of t

∴ V (ϕt(�x
′)) ≤ κ ∀ t ≥ 0

∴ ϕt(�x
′) ∈ N ′ ∀ t ≥ 0

∴ the origin is a stable fixed point �.

Next we prove asymptotical stability when V̇ is negative definite.

Now V (ϕt(�x
′)) is a strictly decreasing function of t.

4Here ϕ is a flow on R, which is a continuous map ϕ : R2→ R
2, with ϕ0(�x) = �x for all �x ∈ R2 and

ϕt2 ◦ ϕt1(�x) = ϕt1+t2(�x).
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∴ V (ϕt2(�x
′))− V (ϕt1(�x

′)) < κ ∀ t2 > t1 ≥ 0

∴ by the mean value theorem5 it follows that there exist a sequence {τ i}∞i=1 tending
to infinity, such that V̇ (ϕt(�x

′))→ 0 as τ i →∞
∴ this implies that ϕτ i(�x

′)→ 0 as τ i →∞, since V̇ is negative definite

∵ V (ϕt(�x
′)) is a strictly decreasing we have that V (ϕt(�x

′)) < V (ϕτ i(�x
′)) ∀ t ≥ τ i

∴ the flows {ϕt(�x′)|t > τ i} lie inside the level curves of V containing ϕτ i(�x
′)

∵ this holds for all τ i it follows that ϕτ i(�x
′)→ 0 as τ i →∞, such that ϕt(�x′)→ 0 as

t→∞
∴ the origin is an asymtptotically stable fixed point, as this holds for all �x′ ∈ N ′ �.

Definition: A function V for which the conditions i)-iii) hold with iii) (definite) semi-

definite is called a (strong) weak Lyapunov function.

Definition: A domain of stability of an asymptotically stable point is a neighbourhood of

the fixed point in which all trajectories approach the fixed point.

3.4.1 Examples for the usage of the Lyapunov stability theorem:

i) Let us consider once more the system (3.37), (3.38) with the minus sign. As a candidate

for a Lyapunov function we take again V [�x(t)] = x21+x22. We have to check whether

the conditions i)-iii) of the Lyapunov stability theorem hold for this function. Clearly

the partial derivatives of V exist and are continuous. Since V (0) = 0 and V (�x) > 0

for �x 	= 0 the function V [�x(t)] is a positive definite function for all �x ∈ R2. We

already computed

V̇ = −2(x21 + x22) (3.52)

Since V̇ (0) = 0 and V̇ (�x) < 0 for �x 	= 0 the function V̇ [�x(t)] is a negative definite

function for all �x ∈ R
2. Therefore V [�x(t)] is a strong Lyapunov function for all

�x ∈ R2. We can apply the Lyapunov stability theorem and conclude that the origin

is an asymptotically stable fixed point. Since V (�x(t)) is a strong Lyapunov function

in the entire plane, the domain of stability is the entire plane. This behaviour is also

confirmed in figure 6, where we observe that every trajectory ends up in the fixed

point at the origin.

ii) Consider the dynamical system

ẋ1 = −x1 + x1x2 (3.53)

ẋ2 = −x2 + x1x2. (3.54)

Show that V [�x(t)] = x21+x22 is a strong Lyapunov function for the origin of the above

system. Find the domain of stability.

5Recall the mean value theorem: A function f(x) is continuous and differentiable on some interval [a, b],

then there exits a ζ with a < ζ < b such that

f(b)− f(a)

b− a
= f(ζ).
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Solution: Let us first see what we would expect from the linearization theorem. It is

easy to see that the system has two fixed points �x
(1)
f = (0, 0) and �x

(2)
f = (1, 1). The

Jacobian is computed to

A(x1, x2) =

(
x2 − 1 x1
x2 x1 − 1

)

⇒ A(�x
(1)
f ) =

(
−1 0

0 −1

)

, A(�x
(2)
f ) =

(
0 1

1 0

)

. (3.55)

From this we obtain that A(�x
(1)
f ) has degenerate positive eigenvalues λ+ = λ− = −1,

such that we have a stable star node at the origin. At A(�x
(2)
f ) we have two real

eigenvalues of opposite sign λ± = ±1, such that we have a saddle point at the second
fixed point �x

(2)
f = (1, 1).

Let us next see what we would conclude from the Lyapunov stability theorem. We

saw already that the condition i) and ii) of the theorem hold for the function V (�x(t)).

In order to check the third condition iii) we compute next

V̇ =
dV

dt
=

∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= 2x1 (−x1 + x1x2) + 2x2 (−x2 + x1x2)

= −2x21(1− x2)− 2x22(1− x1)

∴ V̇ (�x = �0) = 0 and V̇ (�x) < 0 for x1 < 1 and x2 < 1.

∴ ∃ a neighbourhood of the origin in which V̇ is negative definite.

∴ V [�x(t)] is a strong Lyapunov function.

∴ the origin is an asymptotically stable fixed point by the Lyapunov stability theorem.

In order to find the domain of stability N ′ = {�x|V (�x) < κ} we need to determine a
real number κ and the region in which V [�x(t)] is a strong Lyapunov function. We

saw that for x1 < 1 and x2 < 1 the function V [�x(t)] is a strong Lyapunov function,

which means we need to find κ from the relations

V [�x(t)] = x21 + x22 < κ ∧ x1 < 1 ∧ x2 < 1. (3.56)

The smallest κ which satisfies these constraints is κ = 1. This means the domain of

stability is x21+ x22 < 1. The conclusion we drew are confirmed by the phase portrait

obtained from a numerical solution as depicted in figure 10.

iii) Consider the dynamical system

ẋ1 = x1x2 − x31 − x22 (3.57)

ẋ2 = x1x2 − x21. (3.58)

Show that V (�x(t)) = x21+x22 is a weak Lyapunov function for the origin for the above

system.
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Figure 10: Phase portraits for the nonlinear systems (3.53), (3.54).

Solution: Obviously �xf = (0, 0) is a fixed point for the system (3.57), (3.58). The

linearization theorem does not apply in this case since the system is nonsimple. This

is seen from the Jacobian matrix at the fixed point

A(�xf ) =

(
x2 − 3x21 x1 − 2x2
x2 − 2x1 x1

)∣∣∣∣∣
�xf

=

(
0 0

0 0

)

. (3.59)

We found already that the condition i) and ii) of the theorem hold for the function

V [�x(t)]. (Note that the conditions i) and ii) of the theorem are only concerned with

the function V , but do not involve the actual dynamical system.) In order to test

the condition iii) we compute next

V̇ =
dV

dt
=

∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= 2x1(x1x2 − x31 − x22) + 2x2(x1x2 − x21)

= −2x41
∴ V̇ (�x = 0) = 0 and V̇ (�x) ≤ 0 for all �x ∈ R2\�x = 0 (equal sign from V̇ (0, x2) = 0).

∴ V̇ is negative semi-definite in the entire plane.

∴ V (�x(t)) is a weak Lyapunov function by the Lyapunov stability theorem.

∴ the origin is a stable fixed point.

The conclusion we reached are confirmed by the phase portrait obtained from a

numerical solution as depicted in figure 11.

As suggested by the figure the origin appears to be an asymptotically stable fixed point

and we may even draw a stronger conclusion in this case. This does not follow fromt the

Lyapunov stability theorem, but when we envoke the following corollary.

Corollary: Let V [�x(t)] be a weak Lyapunov function for the system �̇x = �F (�x) in a

neighbourhood of the isolated fixed point �xf = (0, 0). Then if V̇ 	= 0 on any trajectory,

except for the fixed point6, the origin is asymptotically stable.
6Note the fixed point is a trajectory by itself.
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Figure 11: Phase portraits for the nonlinear system (3.57), (3.58).

Proof: We omit here the proof.

Looking again at example iii), we can now reach a stronger conclusion. We found that

V̇ (�x) = 0 only for �x = (0, x2). This means all we need to show is that the line (0, x2) is not

a trajectory. To see this we investigate the dynamical system on this line. We substitute

x1 = 0 in to (3.57), (3.58) and leave x2 arbitrary. Then the system becomes ẋ1 = −x22 and
ẋ2 = 0, which means that the line is only crossed in one point and therefore �x = (0, x2) is

not a trajectory for the system (3.57), (3.58). It follows therefore from the corollary that

the origin is asymptotically stable.

3.5 Limit cycles

Before entering formal definitions, we start
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Figure 12: Phase portrait of the dynam-

ical system (3.60), (3.61).

once again with a motivating example and con-

sider the dynamical system

ẋ1 = x2 + x1(1− x21 − x22) (3.60)

ẋ2 = −x1 + x2(1− x21 − x22). (3.61)

First of all we establish that the origin is the only

fixed point of the system. For this we subtract

from the right hand side of (3.60) multiplied by

x2 from the right hand side of (3.61) multiplied

by x1. This simply yields x21 + x22. Setting this

to zero we obtain as the determining equation for

the fixed point x21 + x22 = 0. This mean that the

origin is the only fixed point of the system. Next

we test the linearization theorem. The Jacobian

matrix at the fixed point is computed to

A(�xf ) =

(
1 1

−1 1

)

, (3.62)
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such that the eigenvalues are λ± = 1± i. Therefore the origin is an unstable focus of the

linearized system. Motivated by the fact that we have rotational symmetry we change the

system to polar coordinates using the definitions (3.41)

ẋ1 = ṙ cosϑ− r sinϑϑ̇ = r sinϑ+ r cosϑ(1− r2) (3.63)

ẋ2 = ṙ sinϑ+ r cosϑϑ̇ = r cosϑ+ r sinϑ(1− r2). (3.64)

Adding now the multiple of (3.63) with cosϑ and the multiple of (3.64) with sinϑ we obtain

ṙ = r(1− r2). (3.65)

Whereas subtracting the multiple of (3.64) with sinϑ and from (3.63) multiplied with cosϑ

we obtain

ϑ̇ = −1. (3.66)

We can now distinguish three qualitatively different cases:

r = 1 : The dynamical system (3.65) and (3.66) reduce to ṙ = 0 and ϑ̇ = −1 in this case.
This means r = 1 is a trajectory with constant angle velocity ϑ̇. We may solve (3.66)

to ϑ(t) = −(t− t0) + ϑ0, with constants t0, ϑ0. Therefore r = 1 is a periodic orbit in

the clockwise direction.

r > 1 : The dynamical system (3.65) and (3.66) reduce to ṙ < 0 and ϑ̇ = −1 in this case,
which means that r → 1 for t → ∞, such that ṙ → 0. There is no change in the

interpretation of the angle velocity and therefore we deduce that the trajectories

spiral clockwise inwards towards the periodic orbit r = 1.

r < 1 : In this case the dynamical system (3.65) and (3.66) reduce to ṙ > 0 and ϑ̇ = −1,
which means r → 1 for t → ∞, such that ṙ → 0. The trajectories spiral clockwise

outwards towards the priodic orbit r = 1.

Hence all trajectories tend to r = 1 for t → ∞. Thus it is suggestive to call r(t) = 1 a

stable limit cycle.

Being now more precise, we take �x ∈ Rn and let ϕt be a flow on Rn, that is ϕt(�x(t0)) =

�x(t).

Definition: The ω-limit set (or positive limit set) Lω(�x) of a point �x contains those points

which are approached by the trajectory through �x as t→∞, that is

Lω(�x) =
{
�y ∈ Rn : ∃ a sequence of times tn with tn →∞, such that lim

n→∞
ϕtn(�x) = �y

}

Definition: The α-limit set (or negative limit set) Lα(�x) of a point �x contains those

points which are approached by the trajectory through �x as t→−∞, that is

Lα(�x) =
{
�y ∈ Rn : ∃ a sequence of times tn with tn →−∞, such that lim

n→∞
ϕtn(�x) = �y

}

Definition: A closed orbit φ is a limit cycle if φ is a subset of an α or ω-limit set for

some point �x /∈ φ.
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Definition: A limit cycle φ is a called a stable (unstable) limit cycle, if φ = Lω(�x)

(φ = Lα(�x)) for all �x in some neighbourhood of the limit cycle.

Definition: A limit cycle φ is a called a semi-stable limit cycle, if it is a stable limit cycle

for points on one side and an unstable limit cycle for point on the other side.

Let us return to the example of the dynamical system (3.65), (3.66). Clearly the origin

is a fixed point �xf = (0, 0). A limit cycle φ is given by the set of points for which r = 1.

The α-limit sets and ω-limit sets are found to be

Lα(�x) =






�xf for r < 1

ϕ for r = 1

∅ for r > 1

Lω(�x) =

{
�xf for r = 0

ϕ for r 	= 0
. (3.67)

Therefore according to the previous definitions the circle φ of constant radius r = 1 is a

stable limit cycle.

3.6 Poincaré-Bendixson theory

The question we address now is: What type of limit cycles can we have in general? So far

we found fixed points, closed orbits and “infinity”, that is empty sets. We will now show

that indeed systems of the type �̇x = �F (�x) do not possess other types of limit sets for n = 2,

that is they do not exhibit chaotic behaviour (see later in the course what that means).

This is the essense of the Poincaré-Bendixson theory.

Theorem (Poincaré-Bendixson): Let ϕt be a flow for the system �̇x = �F (�x) and let

D be a closed, bounded and connected set D ∈ R
2, such that ϕt(D) ⊂ D for all time.

Furthermore D does not contain any fixed point. Then there exists at least one limit cycle

in D.
Proof: The proof is omitted here7.

Figure 13: SetD for the Poincaré-

Bendixson

Comment: To apply the Poincaré-Bendixson theorem

we need to find a closed, bounded and connected set

D, which contains no fixed point and to which all the

trajectories enter but never leave. Then we can conclude

that there is a limit cycle in D. Note that the validity

of this theorem is restricted to n = 2 and in addition to

continuous systems, which is implicit in the definition

for the flow. This allows that chaos might exist, and

indeed it does, in systems for n > 2 and also for discrete

systems even for n = 1 or n = 2. We will encounter all

these possibilities later in the course.

3.6.1 Examples for the usage of the Poincaré-Bendixson theorem:

i) By applying the Poincaré-Bendixson theorem show that the system

ẋ1 = x2 +
1

4
x1(1− 2x21 − 2x22) (3.68)

ẋ2 = −x1 +
1

2
x2(1− x21 − x22). (3.69)

7See e.g. G.M. Zaslavsky, Physics of Chaos in Hamiltonian Systems, (World Scientific, Singapore, 1998)
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has at least one periodic orbit inside the annular region 1/2 ≤ r ≤ 2. Find also a

smaller region containing the orbit.

Solution: Let us first establish how many fixed points we have for the above system.

For this we compute x2×(3.68)-x1×(3.69), which yields

x21 + x22 −
1

4
x1x2 = 0. (3.70)

Let us use once more polar coordinates (3.41) and convert (3.70) into

r2 − 1

4
r2 sinϑ cosϑ = 0. (3.71)

Using 2 sinϑ cosϑ = sin 2ϑ we obtain from this for r 	= 0

sin 2ϑ = 8. (3.72)

The equation (3.72) has of course no real solution for ϑ. Therefore the origin is the

only fixed point of the system.

Next we compute the Jacobian matrix for F (�x) in (3.68), (3.69) at the fixed point

A =

(
1
4 1

−1 1
2

)

, (3.73)

which has eigenvalues λ± = 3/8(1±i
√
7). This means the origin is an unstable focus.

Writing now the entire system (3.68)-(3.69) in terms of polar coordinates (3.41) con-

verts the system into

ṙ cosϑ− r sinϑϑ̇ = r sinϑ+
1

4
r cosϑ(1− 2r2) (3.74)

ṙ sinϑ+ r cosϑϑ̇ = −r cosϑ+
1

2
r sinϑ(1− r2). (3.75)

Then (3.74)× cosϑ+(3.75)× sinϑ gives

ṙ =
r

4
(1 + sin2 ϑ)− r3

2
(3.76)

and (3.75)× cosϑ−(3.74)× sinϑ yields

ϑ̇ =
1

8
sin 2ϑ− 1. (3.77)

As ϑ̇ < 0 for all (ϑ, r) there are no further fixed points apart from the origin, as we

know we already concluded from (3.72). This means any annular region surrounding

the origin contains no fixed points, which is an important ingredient to know for

the application of the Poincaré-Bendixson theorem. Let us next look search for the

existence of limit cycles and periodic orbits. Consider for this the closed, bounded

and connected domain

D =

{
(r, ϑ) :

1

2
≤ r ≤ 2

}
, (3.78)
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as specified in the task. Since ϑ̇ 	= 0 ∀(ϑ, r) ∈ D there are no fixed points in D. At
the boundaries of D we compute

r =
1

2
: ṙ =

1

8
(1 + sin2 ϑ)− 1

16
=

1

16
(1 + 2 sin2 ϑ) > 0 ∀ϑ (3.79)

r = 2 : ṙ =
1

2
(1 + sin2 ϑ)− 4 < 0 ∀ϑ. (3.80)

Therefore, we conclude that trajectories which enter the closed, bounded and con-

nected set D, do not leave it anymore. Thus by the Poincaré-Bendixson theorem we

deduce that there is at least one limit cycle in D.
Next we determine a smaller annular region with this property: Since we know

that ϑ̇ 	= 0 ∀(ϑ, r) except for the origin, there is no problem with the fixed points.

On the inner boundary we require that ṙ > 0 ∀ϑ, which is equivalent to
1

4
r(1 + sin2 ϑ)− 1

2
r3 > 0 ∀ϑ. (3.81)

This means that for r 	= 0 we demand

Figure 14: Radial bounds for the

function 1

2
(1 + sin2 ϑ)

r2 <
1

2
(1 + sin2 ϑ) ∀ϑ. (3.82)

In figure 15 we have plotted the right hand side of equa-

tion (3.82) as a function of ϑ. In order to obtain an

annular region we would now like to eliminate the ϑ-

dependence in this estimate and substitute the right

hand side simply by a real number. Clearly if we re-

place 1
2(1 + sin2 ϑ) by its minimum the inequality will

hold still hold for all values of ϑ. (See also figure for

this.) Computing the minimum of the upper bound then

yields

r2 <
1

2
min(1 + sin2 ϑ) =

1

2
∀ϑ. (3.83)

On the outer boundary we require that ṙ < 0 ∀ϑ, which is equivalent to
1

4
r(1 + sin2 ϑ)− 1

2
r3 < 0 ∀ϑ. (3.84)

This means that for r 	= 0 we have to have

r2 >
1

2
(1 + sin2 ϑ) ∀ϑ. (3.85)

Now we are investigating the outer boundary, therefore we will not destroy the bound

in (3.85) by making the lower bound greater and replace it by its maximal value. We

compute for this the maximum of the lower bound, such that

r2 >
1

2
max(1 + sin2 ϑ) = 1 ∀ϑ. (3.86)
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This means we can now define a new closed, bounded and connected set

Dε =
{
(r, ϑ) :

1√
2
− ε ≤ r ≤ 1 + ε

}
, (3.87)

where 0 < ε � 1. We need to be careful here and introduce the ε as in our above

estimates we did not include the equal signs, which is necessary for the set to be closed,

bounded and connected. For the Poincaré-Bendixson theorem to be applicable we

note first that there are obviously no fixed points in Dε. Since ṙ > 0 on the inner

boundary and ṙ < 0 on the outer boundary, this means that trajectories which enter

the domain Dε do not leave it anymore. This implies by the Poincaré-Bendixson

theorem that there is at least one periodic orbit in Dε. Since r = 1/
√
2 and r = 1

are no trajectories of the system, the above statements are also true for ε = 0, that

is we may consider the new optimized domain

D =

{
(r, ϑ) :

1√
2
≤ r ≤ 1

}
(3.88)

and conclude that the system (3.68)-(3.69) possesses for sure a limit cycle in D.

ii) Show that the second order differential equation

ẍ− (1− 3x2 − 2ẋ)ẋ+ x = 0 (3.89)

has at least one periodic solution.

Solution: Using once again the transformation (3.2) introduced earlier we convert this

second order differential equation first into two coupled first order differential equa-

tions. We obtain

ẋ1 = x2, (3.90)

ẋ2 = −x1 + x2(1− 3x21 − 2x22). (3.91)

Clearly �xf = (0, 0) is the only fixed point of the system. The Jacobian matrix at the

fixed point is computed to

A(�xf ) =

(
0 1

−1 1

)

, (3.92)

such that the eigenvalues are λ± = 1/2± i
√
3/2. Therefore the origin is an unstable

focus of the linearized system. Next we convert the system (3.90), (3.91) to polar

coordinates (3.41), which gives

ṙ cosϑ− r sinϑϑ̇ = r sinϑ (3.93)

ṙ sinϑ+ r cosϑϑ̇ = −r cosϑ+ r sinϑ(1− r2 cos2 ϑ− 2r2). (3.94)

Then (3.93)× cosϑ+(3.94)× sinϑ yields

ṙ = r sin2 ϑ(1− r2 cos2 ϑ− 2r2). (3.95)

In order to find the limit cycle domain we require ṙ > 0 ∀ϑ on the inner boundary,

which is equivalent to

1− r2(2 + cos2 ϑ) > 0 ∀ϑ. (3.96)
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This means that for r 	= 0 we demand

Figure 15: Radial bounds for the

function 1/(2 + cos2 ϑ)

r2 <
1

2 + cos2 ϑ
∀ϑ. (3.97)

We now use the same logic as in the previous example

and replace the bound on the right hand of (3.97) by its

minimum, as this guarantee the validity for all values of

ϑ. We compute the minimum of the bound to

r2 < min

[
1

(2 + cos2 ϑ)

]
=

1

3
∀ϑ. (3.98)

On the outer boundary we need ṙ < 0 ∀ ϑ, which is

equivalent to

1− r2(2 + cos2 ϑ) < 0 ∀ϑ. (3.99)

This means that for r 	= 0 we require

r2 >
1

(2 + cos2 ϑ)
∀ϑ. (3.100)

Now we are investigating the outer boundary, therefore we will not invalidate the

estimate by increasing the lower bound greater. We compute for this the maximum

of the bound

r2 > max

[
1

(2 + cos2 ϑ)

]
=

1

2
∀ϑ. (3.101)

This means we can now define a new domain

Dε =
{
(r, ϑ) :

1√
3
− ε ≤ r ≤ 1√

2
+ ε

}
, (3.102)

where 0 < ε � 1. We introduced here the ε for the same reason as in the previous

example. For the Poincaré-Bendixson theorem to be applicable we note first that

there are obviously no fixed points in Dε. Since ṙ > 0 on the inner boundary and

ṙ < 0 on the outer boundary, this means that trajectories which enter the domain Dε
do not leave it anymore. This implies by the Poincaré-Bendixson theorem that there

is at least one periodic orbit in Dε. Since r = 1/
√
2 and r = 1/

√
3 are no trajectories

of the system, the above statements are also true for ε = 0, that is we may consider

the new optimized domain

D =

{
(r, ϑ) :

1√
3
≤ r ≤ 1√

2

}
, (3.103)

and deduce that the system (3.90)-(3.91) has a limt cycle in there. In turn this means

that the differential equation (3.89) has a periodic solution in D.

The next theorem is a further necessary condition for a limit cycle to exist.

Theorem 4: A limit cycle contains at least one fixed point.

— 28 —



MA3608 , Andreas Fring, Dynamical Systems

Proof: Omitted.

We also illustrate the working of this theorem with an example.

Example: We show that following system has no limit cycle

ẋ1 = 1 + x22 − exp(x1x2) (3.104)

ẋ2 = x1x2 + 5. (3.105)

In order to find a fixed point we need to solve

1 + x22 = exp(x1x2) and x1x2 + 5 = 0. (3.106)

There is obviously no real solution for (3.106), which mean the system (3.104), (3.105) has

no fixed points. Therefore according to theorem 5 the system can also not have any limit

cycles.

Being now equipped with tools, which allows us to determine that a certain region has

to contain a limit cycle, we will discuss next a criterium which permits us to exclude this

possibility.

3.6.2 Bendixson’s criterium

The following criterium is a sufficient condition for the non-existence of limit cycles.

Theorem (Bendixson’s criterium): Let D be a simply connected region (this means

“there are no holes in D”) of the phase plane in which the function �F (�x) of the system

�̇x = �F (�x) has the property that its divergence is of constant sign, i.e.

div �F =
∂F1
∂x1

+
∂F2
∂x2

< 0 or div �F =
∂F1
∂x1

+
∂F2
∂x2

> 0. (3.107)

Then the system posesses no closed orbit contained entirely in D.

Proof: We use Green’s theorem in the plane. Take P (x1, x2) and Q(x1, x2) to be real

valued functions and C a curve enclosing the simply connected region D in the positive

mathematical sense. Then Green’s theorem states
∮

C

[P (x1, x2)dx1 +Q(x1, x2)dx2] =

∫∫

D

[
∂Q(x1, x2)

∂x1
− ∂P (x1, x2)

∂x2

]
dx1dx2. (3.108)

We take now P (x1, x2) = −F2(x1, x2) and Q(x1, x2) = F1(x1, x2). Furthermore, we assume

that C is a limit cycle of period T . Then the left hand side of (3.108) yields

∮

C

(F1dx2 − F2dx1) =

T∫

0

dt(F1ẋ2 − F2ẋ1) =

T∫

0

dt(ẋ1ẋ2 − ẋ2ẋ1) = 0. (3.109)

The right hand side is, however, never vanishing

∫∫

D

(
∂F1
∂x1

+
∂F2
∂x2

)
dx1dx2 =

∫∫

D

div �F dx1dx2 	= 0 (3.110)
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as the integrant does not change sign. Therefore C can not be a limit cycle.�
Let us illustrate the use of Bendixson’s criterium with some examples.

Example 1: Consider the dynamical system

ẋ1 = x2 + x1(1− x21 − x22) = F1(x1, x2) (3.111)

ẋ2 = x1 + x2(1− x21 − x22) = F2(x1, x2). (3.112)

Computing the divergence for this system gives

div �F =
∂F1
∂x1

+
∂F2
∂x2

= (1− 3x21 − x22) + (1− x21 − 3x22) = 2− 4(x21 + x22), (3.113)

which means

div �F =

{
< 0 for r2 > 1/2

> 0 for r2 < 1/2
. (3.114)

Therefore we conclude from Bendixson’s criterium that there is no periodic orbit entirely

contained inside the simply connected region

D =

{
(x1, x2) : x

2
1 + x22 <

1

2

}
. (3.115)

Hence, if a closed orbit exists it has to be entirely in the complement of D, that is in

D∨ =

{
(x1, x2) : x

2
1 + x22 >

1

2

}
(3.116)

or intersect the circle x21 + x22 = 1/2. Note that D∨ despite the fact that div �F > 0 in D∨,
i.e. the divergence has constant sign, we can not exclude the possibility of the existence

of a limit cycle in D∨ since it is not a simply connected region and therefore Bendixson’s
criterium can not be applied in this case.

Example 2: In this example we apply Bendixson’s criterium and an additional argument.

We consider the system

ẋ1 = 4x1 − 2x21 − x22, (3.117)

ẋ2 = x1 + x2x
2
1. (3.118)

such that the divergence results to

div �F = 4− 4x1 + x21 = (x1 − 2)2 > 0 for x1 	= 2. (3.119)

According to the Bendixson’s criterium we can not have a limit cycle entirely contained in

either of the two half planes x1 < 2 or x1 > 2. However, according to Bendixson’s criterium

a closed orbit which crosses the line x1 = 2 could still be a possibility. Nonetheless, on

this line we have ẋ1 = −x22 ≤ 0, which means the line is always crossed from the right to

the left. Thus it is not possible to have a closed orbit crossing this line and therefore the

system can not possess any limit cycle.

— 30 —



MA3608 , Andreas Fring, Dynamical Systems

Example 3: Let us now discuss an example in which we have to make use of all the above

criteria and consider the system

ẋ1 = x21 − x2 − 1, (3.120)

ẋ2 = x1x2 − 2x2. (3.121)

First we apply Bendixson’s criterium and compute for this purpose the divergence

div �F = 2x1 + x1 − 2 = 3x1 − 2 =






< 0 for x1 < 2/3

= 0 for x1 = 2/3

> 0 for x1 > 2/3

. (3.122)

According to Bendixson’s criterium we can not have a limit cycle entirely contained in

either of the two half planes x1 < 2/3 or x1 > 2/3. However, a closed orbit which crosses

the line x1 = 2/3 constitutes still a possibility. On this line we have ẋ1 = −5/9 − x2,

such that ẋ1 < 0 for x2 > −5/9 and ẋ1 > 0 for x2 < −5/9. This means for x2 > −5/9
trajectories cross this line from the right to the left and for x2 < −5/9 from the left to the

right. Thus unlike as in the previous example we can still construct a closed orbit crossing

this line and the possibility of a limit cycle can not yet be excluded. Let us therefore also

invoke theorem 4 and compute for this purpose the fixed points of the system. Solving

x21 − x2 − 1 = 0 and x1x2 − 2x2 = 0, (3.123)

we find the three fixed points x
(1)
f = (1, 0), x

(2)
f = (−1, 0) and x

(3)
f = (2, 3). The possibility

to form a closed orbit encircling one of these fixed points and crossing the line x1 = 2/3

still exists. Next we consider the line x2 = 0 on which ẋ2 = 0 and ẋ1 = x21 − 1. From this

equation we see that we can not cross this line without being dragged into x
(2)
f for x1 < 1

or to be repelled to positive infinity for x1 > 1. Thus all possibilities have been exhausted

and we can not draw any closed orbit surrounding one of the fixed points and at the same

time crossing the line x1 = 2/3. We therefore conclude that the system can not possess

any limit cycle.

3.7 Bifurcation theory

We will now consider systems similar to those before, but with the difference that the

vector function �F depends in addition on a real parameter λ. We consider first systems in

one dimension

ẋ = F (x, λ) λ ∈ R. (3.124)

Bifurcation theory investigates how the number of steady solutions of systems of the type

(3.124) depend on the parameter λ. A bifurcation occurs if the solution of (3.124) changes

its qualitative behaviour as the parameter λ varies. Considering F (x, λ) = 0 leads to a

plot in the (x, λ)-plane called the bifurcation diagram. As usual we commence by studying

a motivating example for a bifurcation.
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Example: Consider the dynamical system

Figure 16: Bifurcation

diagram.

ẋ = λ− x2 = F (x, λ). (3.125)

This means for the fixed points ẋ = 0 we have

F (x, λ) = 0 ⇔ x2 = λ ⇔ x = ±
√
λ. (3.126)

The bifurcation diagram can then be sketched as in figure 16,

i.e we plot x as a function of λ. The curve F (x, λ) = 0 is called

the equilibrium curve for the dynamical system (3.125).

Similarly as for points, a bifurcation diagram, being

Figure 17: Bifurcation diagram for

the system (3.125).

just a collection of points, also contains information on

the stability of the fixed points. In the example (3.125)

we find the following for the time derivative of x

for λ < 0 ⇒ ẋ < 0 ∀x,
for λ > 0 ∧ −

√
λ < x <

√
λ ⇒ ẋ > 0,

for λ > 0 ∧ x >
√
λ ⇒ ẋ < 0,

for λ > 0 ∧ x < −
√
λ ⇒ ẋ < 0.

Elaborating further on the figure 16, this information

is encoded into the bifurcation diagram as depicted in

figure 17.

We have used here the following conventions:

- Unstable solutions are indicated by dashed lines.

- Stable solutions are continuous (solid) lines.

- As before we indicated the directions of the evolution by an arrow.

3.7.1 Different types of bifurcations

Bifurcation diagrams may exhibit quite different types of qualitative behaviour at points

where bifurcations occur. One organizes them by catorizing according to different types of

derivatives at these points and by grouping them under different names.

Turning point:

The names given are related to the overall shape of the bifurcation. The bifurcation point

at origin in figure 17 is called a turning point for obvious reasons. More precisely we can

capture the occurrence of such type of behaviour in the following definition.

Definition: Let λ(x) be the solution of the equation F (x, λ) = 0, that is λ(x) is an

equilibrium curve parameterizing the fixed points for the system ẋ = F (x, λ). A specific

point (x0, λ0) on this curve is called a turning point if ∂F/∂λ|(x0,λ0) 	= 0 and ∂λ/∂x

changes sign at this point.
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Example: Consider once more the system (3.125). Obviously λ(x) = x2 and the fixed

points and we therefore compute

∂F

∂λ
= 1 and

∂λ

∂x
=

∂(x2)

∂x
= 2x. (3.127)

Since ∂λ/∂x changes sign at x = 0 it follows that λ0 = 0 and therefore x0 = 0. This means

according to the definition (x0, λ0) = (0, 0) is a turning point.

Transcritical bifurcation:

A different type of behaviour arises when the partial differentials of F vanish at the bifur-

cation point.

Definition: Let λ(x) be an equilibrium curve for the system ẋ = F (x, λ). A point (x0, λ0)

on this curve is called a transcritical bifurcation if ∂F/∂λ|(x
0
,λ0) = 0, ∂F/∂x|(x

0
,λ0) = 0

and in addition two and only two branches of the equilibrium curve pass through this point

which have both distinct tangents at (x0, λ0).

Example: The following system possesses a transcritical bifurcation point

ẋ = λx− γx2 = F (x, λ), γ > 0, λ ≡ bifurcation parameter. (3.128)

Note that when we have two or more parameters in our equations we have to be clear which

one is taken to be the bifurcation parameter. The fixed points are easily identified to be

at the two lines x = 0 and x = λ/γ. We compute for (3.128)

∂F

∂x
= λ− 2γx and

∂F

∂λ
= x. (3.129)

Setting both equations to zero we obtain the point

Figure 18: Bifurcation diagram for

the system (3.128).

(x0, λ0) = (0, 0) as a potential candidate for a trans-

critical bifurcation. In order to verify the second part

of the definition let us plot the bifurcation diagram.

First we have to analyze the direction of evolution. We

find

for λ < 0 ∧ x > 0 ⇒ ẋ < 0,

for λ > 0 ∧ x < 0 ⇒ ẋ < 0,

for λ > 0 ∧ 0 < x < λ/γ ⇒ ẋ > 0,

for λ > 0 ∧ x > λ/γ ⇒ ẋ < 0,

for λ < 0 ∧ x < λ/γ ⇒ ẋ < 0,

for λ < 0 ∧ λ/γ < x < 0 ⇒ ẋ > 0.

Encoding this information into the bifurcation diagram we can draw figure 18 by using

the conventions as stated above. This means that at the point (x0, λ0) = (0, 0) we have a

transcritical bifurcation as two and two two branches of the equilibrium curve pass through

this point, namely the lines x = 0 and x = λ/γ. Clearly tangents at (x0, λ0) to both of

these lines are different.
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Pitchfork bifurcation:

A further distinct type of bifurcation emerges when in addition to the above dλ/dx changes

sign on one of the branches. The origin for the name pitchfork bifurcation, given to these

type of bifurcation, is apparent when looking at the shape of the equlibrium curve, as for

instance illustrated in 19.

Definition: Let λ(x) be an equilibrium curve for the system ẋ = F (x, λ). A point (x0, λ0)

on this curve is called a a pitchfork bifurcation if ∂F/∂λ|(x0,λ0) = 0, ∂F/∂x|(x0,λ0) = 0

and dλ/dx changes sign on one branch of the equilibrium curve with distinct tangents.

Example: The following system possesses a pitchfork bifurcation point

ẋ = λx− γx3 = F (x, λ), γ > 0, λ ≡ bifurcation parameter. (3.130)

The fixed points are found to be at the three lines x = 0 and x = ±
√

λ/γ for λ > 0. We

compute now for the function F in (3.130)

∂F

∂x
= λ− 3γx2 and

∂F

∂λ
= x. (3.131)

Setting both equations to zero we obtain identify (x0, λ0) =

Figure 19: Bifurcation diagram for

the system (3.130).

(0, 0) as a possible pitchfork bifurcation point. Once

again, in order to see the remaining part of the defini-

tion we plot the bifurcation diagram. We find

for λ < 0 ∧ x > 0 ⇒ ẋ < 0,

for λ < 0 ∧ x < 0 ⇒ ẋ > 0,

for λ > 0 ∧ x >
√

λ/γ ⇒ ẋ < 0,

for λ > 0 ∧ 0 < x <
√

λ/γ ⇒ ẋ > 0,

for λ > 0 ∧ −
√

λ/γ < x < 0 ⇒ ẋ < 0,

for λ > 0 ∧ x < −
√

λ/γ ⇒ ẋ > 0.

Next we compute the change of λ with respect to x on

the branches x = ±
√

λ/γ
dλ

dx
=

d(γx2)

dx
= 2γx. (3.132)

Clearly dλ
dx changes sign at x = 0. Therefore we have a pitchfork bifurcation at (x0, λ0) =

(0, 0), which we depict in figure 19 by using the above conventions.

Pitchfork bifurcations are further classsified according to the direction into which the

fork points. More precisely:

Definition: When the bifurcated solution arises as λ increases (decreases) above the values

for which the bifucation occurs, the pitchfork bifurcation is called supercritical (subcritical).

According to these definitions the system (3.130) constitutes a supercritical bifurcation.

It is easily seen (exercise) that taking γ < 0 will give a subcritical bifurcation. The

corresponding bifucation diagram is 19 reflected about the x-axis and with all arrows

reversed.
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Hopf bifurcation:

Having classified various bifurcations in one dimension let us return to two dimensional

systems, but now with the difference that we have in addition a bifurcation parameter λ

at our disposal which we shall vary

ẋ1 = F1(x1, x2, λ), (3.133)

ẋ2 = F2(x1,x2, λ). (3.134)

As usual let us start by investigating a motivating example.

Example: Consider the dynamical system

ẋ1 = λx1 − x2 − x1(x
2
1 + x22), (3.135)

ẋ2 = x1 + λx2 − x2(x
2
1 + x22), (3.136)

with λ ∈ R taken to be a bifurcation parameter. It easy to see that the fixed point of the

system is �xf = (0, 0). The Jacobian matrix of the linearized system at the fixed point is

computed to

A(�xf ) =

(
λ −1
1 λ

)

, (3.137)

such that the eigenvalues are e± = λ± i. Depending on the values for λ we have now the

following possibilities:

λ < 0 : the eigenvalues are complex with negative real part⇒ �xf ≡ stable focus

λ = 0 : the eigenvalues are purely imaginary⇒ �xf ≡ centre

λ > 0 : the eigenvalues are complex with positive real part⇒ �xf ≡ unstable focus.

Let us confirm this behaviour by looking in more detail at the system. We convert for this

purpose the equations (3.135), (3.136) to polar coordinates (3.41), which gives

ṙ cosϑ− r sinϑϑ̇ = λr cosϑ− r sinϑ− r cosϑr2, (3.138)

ṙ sinϑ+ r cosϑϑ̇ = r cosϑ+ λr sinϑ− r sinϑr2. (3.139)

Then (3.138)× cosϑ+(3.139)× sinϑ yields

ṙ = r(λ− r2), (3.140)

and (3.138)× sinϑ−(3.139)× cosϑ gives

ϑ̇ = 1. (3.141)

We deduce from this that for λ > 0 the circle r =
√
λ is a closed orbit. In fact this is a

stable limit cycle as ṙ < 0 for r >
√
λ and ṙ > 0 for r <

√
λ. For λ < 0 we have instead

always ṙ < 0 such that all trajectories spiral anti-clockwise towards the origin. Such type

of bifurcations for which the fixed point at the origin changes its characteristic as the

bifurcation parameter varies, i.e. from stable to a centre and then to an unstable fixed

point are called Hopf bifurcations. Let us study these type of behaviour more formally.
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3.7.2 The Hopf bifurcation theorem

The next theorem is a criterium which provides us with tools to decide whether such type

of bifurcations may occur.

Theorem (Hopf bifurcation theorem): Let the point (0,0,λ), with λ ∈ R, be a fixed
point for the system

ẋ1 = F1(x1, x2, λ), (3.142)

ẋ2 = F2(x1, x2, λ), (3.143)

for all values of λ. If for a particular value of λ, say λ = λ̃,

i) the eigenvalues e1(λ) and e2(λ) of the linearized system are purely imaginary, i.e.

e1(λ̃) ∈ iR and e2(λ̃) ∈ iR,

ii) the real part of the eigenvalues Re(e1(λ)) = Re(e2(λ)) satisfies

d

dλ
Re(e1/2(λ))

∣∣∣∣
λ=λ̃

> 0, (3.144)

iii) the origin is asymptotically stable for λ = λ̃,

then the following statements hold:

a) The point with λ = λ̃ is a bifurcation point of the system.

b) For λ ∈ (λ1, λ̃) with some λ1 < λ̃ the origin is a stable focus.

c) For λ ∈ (λ̃, λ2) with some λ2 > λ̃ the origin is an unstable focus surrounded by a stable

limit cycle whose size increases with λ.

Proof: Omitted here8.

Note that in order to apply the theorem we have to show in condition iii) that the

origin is asymptotically stable for λ = λ̃. Unfortunately for the case at hand we can not

obtain any information about the origin from the linearization theorem as the linearization

is a centre. The alternative method we have learned so far is to search for Lyapunov

functions, which is, however, often very difficult. Therefore we introduce here yet another

approach which makes use of the so-called stability index and will allow us to draw the

desired conclusion.

Corollary: Suppose that for the system

�̇x = �F (�x), (3.145)

we have transformed the linearized system

�̇x = A�x, (3.146)

8See for instance J.E. Marsden and M. MacCracken, The Hopf Bifurcation and its Application (Appl.

Math. Sciences, Vol 19, Springer Ney York, 1976)
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with the help of �x = U�y into the Jordan normal form

�̇y = U−1AU�y = J�y =

(
0 ω

−ω 0

)

, (3.147)

with ω ∈ R+. Accordingly the entire system (3.145) is transformed with the help of �x = U�y

to

�̇y = �Y (�y). (3.148)

Then if the stability index

I = ω
(
Y 1111 + Y 1122 + Y 2112 + Y 2222

)
+ Y 111(Y

2
11 − Y 112) + Y 222(Y

2
12 − Y 122) + Y 211Y

2
12 − Y 122Y

1
12

computed from (3.148) is negative, the origin is asymptotically stable. We have used here

the abbreviations

Y ijk =
∂2Yi

∂yj∂yk

∣∣∣∣
(0,0)

and Y ijkl =
∂3Yi

∂yj∂yk∂yl

∣∣∣∣
(0,0)

. (3.149)

Proof: Omitted here9.

Let us illustrate with some examples how this theorem can be applied.

Example 1: Investigate whether the dynamical system

ẋ1 = 7x2, (3.150)

ẋ2 = −(x21 − λ)x2 − 7x1 − 2x31, (3.151)

possess a Hopf bifurcation point at the origin when the parameter λ is varied.

Solution: We start by computing the Jacobian matrix at the origin to

A(�xf = (0, 0)) =

(
0 7

−7 λ

)

.

The two eigenvalues are computed to

detAe = e2 − λe+ 49 = 0 ⇒ e± =
λ

2
± 1

2

√
λ2 − 196. (3.152)

The Hopf bifurcation theorem requires that:

i) For a particular value of λ the eigenvalues are purely imaginary. This is indeed

the case for λ = λ̃ = 0 we have e± = ±i
√
7.

ii) We compute
d

dλ
Re(e±(λ))

∣∣∣∣
λ=λ̃=0

=
1

2
> 0. (3.153)

9See for instance J.E. Marsden and M. MacCracken, The Hopf Bifurcation and its Application (Appl.

Math. Sciences, Vol 19, Springer Ney York, 1976)
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iii) We have to show that the origin is asymptotically stable, which we do by means

of the corollary. Note that the system is already in Jordan normal form, such

that A = J and �X = �Y . This means we can compute I directly. Considering

(3.150) and (3.151) we observe that the only nonvanishing term in the definition

for the stability index is Y 2112 = −2. Together with ω = 7 we compute therefore

I = ωY 2112 = −14.

As I is negative it follows therefore from the corollary that the origin is asymp-

totically stable.

Thus the Hopf bifurcation theorem applies, which means in particular that (0, 0, 0) is a

bifurcation point for the system (3.150), (3.151).

Example 2: Show that the second order differential equation

ẍ+ (x2 − λ)ẋ+ 2x+ x3 + αẋ3 = 0 α, λ ∈ R, (3.154)

has a bifurcation point at λ = 0 when α = 1 and that in this case the solution to (3.154)

is oscillatory for some λ > 0. Can you draw the same conclusion for α = −1?

Solution: Using once more the transformation (3.2), we convert the equation (3.154)

into two first order equations

ẋ1 = ẋ = x2, (3.155)

ẋ2 = ẍ = −(x21 − λ)x2 − 2x1 − x31 − αx22. (3.156)

From this we compute the Jacobian matrix at the origin as

A(�xf = (0, 0)) =

(
0 1

−2 λ

)

. (3.157)

Then the two eigenvalues are computed to

detAe = e2 − λe+ 2 = 0 ⇒ e± =
λ

2
± 1

2

√
λ2 − 8. (3.158)

The Hopf bifurcation theorem requires that

i) For a particular value of λ the eigenvalues are purely imaginary. Once again this

is true for λ = λ̃ = 0 as in that case we find e± = ±i
√
2.

ii) We compute

d

dλ
Re(e±(λ))

∣∣∣∣
λ=λ̃=0

=
1

2
> 0. (3.159)
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iii) We have to show that the origin is asymptotically stable, which we do by means

of the corollary. For λ = λ̃ = 0 the corresponding eigenvectors to the eigenvalues

e± = ±i
√
2 are �v± = (∓i,

√
2). Using now these eigenvectors as column vectors

in the matrix U , which is used for the similarity transfomation will not yield

the form the Jordan form (3.147) with ω =
√
2. Let us therefore compute U in

a pedestrian way. Making a generic ansatz for U , we have to solve

U−1AU = J ⇔
(

0 1

−2 λ

)(
a b

c d

)

=

(
a b

c d

)(
0
√
2

−
√
2 0

)

, (3.160)

which gives (
c d

−2a −2b

)

=

(
−
√
2b
√
2a

−
√
2d
√
2c

)

. (3.161)

Comparing this equality entry by entry we obtain c = −
√
2b and d =

√
2a for

λ = 0. Making a convenient choice a = 1 and b = 0, we find

U =

(
1 0

0
√
2

)

, (3.162)

which means according to �x = U�y we have to replace in (3.155), (3.156) x1 → y1
and x2 →

√
2y2 in order to obtain the system (3.148). Then the original system

(3.155), (3.156) is converted into the form

ẏ1 =
√
2y1, (3.163)√

2ẏ2 = −y21y2
√
2− 2y1 − y31 − α2

√
2y32. (3.164)

More conveniently (3.164) is converted into

ẏ2 = −y21y2 −
√
2y1 − y31/

√
2− 2αy32.

From (3.163), (3.164) we compute the stability index. The only non-vanishing

term in the definition for I are Y 2112 = −2 and Y 2222 = −12α. With ω =
√
2 the

stability index is therefore computed to

I = ω
(
Y 2112 + Y 2222

)
=
√
2(−2− 12α). (3.165)

Clearly for α = 1 this is negative. Therefore it follows by means of the corollary

that the origin is asymptotically stable.

Thus the Hopf bifurcation theorem applies, which means in particular that (0, 0, 0)

is a bifurcation point for the system (3.155), (3.156). Since for λ > 0 the origin is

surrounded by stable limit cycles and the differential equation (3.154) is oscillatory

for some λ > 0.

When α = −1 the stability index is positive and we can not conclude that the origin is
asymptotically stable and therefore can not apply the Hopf bifurcation theorem.
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3.8 Hamiltonian Systems

Hamiltonian systems are a particular subclass of dynamical systems, which play a central

role in physics. When one considers a dynamical system with N degrees of freedom, the

following differential equations hold when the system can be decribed by a Hamiltonian

formalism
d�q

dt
=

∂H(�p, �q)

∂�p
and

d�p

dt
= −∂H(�p, �q)

∂�q
. (3.166)

The function H(�p, �q) is called the Hamiltonian of the system, depending on the coordinates

�q = (q1, q2, . . . , qn) and momenta �p = (p1, p2, . . . , pn). The degrees of freedom specify

the dimension of the phase space, which means considering the system (3.166) in three

dimensional space implies N = 6n. Each particle has six degrees of freedom, i.e. three

related to its position in three dimensional space and three related to its momentum. For

instance, the case n = 3 corresponds to the famous three-body problem. The central

question in classical mechanics is to describe the system of the above type in phase space.

We make here one crucial assumption, namely we exclude friction, which otherwise would

lead to a non-trivial loss of energy in our system. Our aim is to analyse these systems in

a similar manner as we have analysed the more generic type of dynamical systems, but we

want to exploit the special form of these systems. As before, of particular interest is the

question of what can be said say about such systems when one does not know the exact

solution? Let us restrict once more to the case n = 1 in one dimension, that is N = 2.

Definition: A system of differential equations on R2 is said to be a Hamiltonian system

with two degrees of freedom if there exists a twice continuously differentiable function

H(x1, x2) such that

ẋ1 =
∂H

∂x2
and ẋ2 = −

∂H

∂x1
. (3.167)

The equations (3.167) are said to be the equations of motions corresponding to the Hamil-

tonian H. When H does not depend explicitly on the time t, i.e. it is of the form

H(x1(t), x2(t)) and not H(x1(t), x2(t), t), the system is called autonomous.

Example 1: One of the most famous examples is the harmonic oscillator, decribed by the

Hamiltonian

H(x1, x2) =
1

2

(
x22 + ω2x21

)
=

(
1

2

(
p2 + ω2q2

))
ω ∈ R. (3.168)

Translating to the notions of physics we identify x2 ≡ p and x1 ≡ q. In classical mechanics

this describes the motion of a particle obeying Hook’s law, i.e. a particle which is subject

to a linear force towards its equilibrium position, as for instance a particle swinging on

a spring. Given the Hamiltonian (3.168) we can derive from the defining relations for a

Hamiltonian system (3.167) the corresponding dynamical system (equation of motion)

ẋ1 =
∂H

∂x2
= x2 and ẋ2 = −

∂H

∂x1
= −ω2x1. (3.169)

The solutions to (3.169) are easily found to be

x1 = A sin(ωt+ φ) and x2 = Aω cos(ωt+ φ) A, φ ∈ R. (3.170)
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We may verify this also by combining the two equations in (3.169) into one single equation

ẍ1 + ω2x1 = 0. The constants A, φ incorporate the initial conditions.

Example 2: Let us next perturb the harmonic oscillator and consider

H(x1, x2) =
1

2
αx21 + βx1x2 +

1

2
γx22 α, β, γ ∈ R, (3.171)

from which we compute the dynamical system

ẋ1 =
∂H

∂x2
= βx1 + γx2 and ẋ2 = −

∂H

∂x1
= −αx1 − βx2. (3.172)

We saw that it is easy to compute the equations of motion from a given Hamiltonian, but

what about the reverse situation? A dynamical system might not even correspond to a

Hamiltonian system since (3.167) is of a very special form. The following proposition is a

criterium to decide that.

Proposition 1: A dynamical system

ẋ1 = F1(x1, x2) and ẋ2 = F2(x1, x2), (3.173)

is a Hamiltonian system if and only if

div �F =
∂F1
∂x1

+
∂F2
∂x2

= 0. (3.174)

Proof:

“⇒” Let us suppose the dynamical system is a Hamiltonian system. Then by definition

there exists a functions H with F1 = ∂H/∂x2 and F2 = −∂H/∂x1. Therefore

div �F =
∂F1
∂x1

+
∂F2
∂x2

=
∂2H

∂x1∂x2
− ∂2H

∂x2∂x1
= 0. (3.175)

Note that the differential operators ∂/∂x1 and ∂/∂x2 are commutative, meaning that

it is the same whether we differentiate first with repect to x1 and then with respect

to x2 or vice versa.

“⇐” Let us now suppose that div �F = 0, then Green’s theorem states

0 =

∫∫

D

[
∂F1
∂x1

+
∂F2
∂x2

]
dx1dx2 =

∮

C

[−F2dx1 + F1dx2] (3.176)

where D is a simply connected region with boundary D. This means the vectorfield
�F is a gradient field, i.e. there exists a function H(x1, x2) with

(−F2, F1) = gradH =

(
∂H

∂x1
,
∂H

∂x2

)
, (3.177)

which is what we wanted to show �.
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Example 1: Consider the dynamical system

ẋ1 = x2 and ẋ2 = x1. (3.178)

We compute for this div �F = 0 and by proposition 1 we deduce that (3.178) is a Hamiltonian

system. We can therefore attempt to construct the Hamiltonian

∂H
∂x2

= x2 = ẋ1 ⇒ H(x1, x2) =
1
2x
2
2 + f(x1)

− ∂H
∂x1

= x1 = ẋ2 ⇒ H(x1, x2) = −12x21 + f̃(x2)

}

⇒ H(x1, x2) = −
1

2
x21 +

1

2
x22 + c,

(3.179)

with f, f̃ being some arbitrary functions and c some constant which we usually set to zero,

but it might be fixed by some other value if needed.

Example 2: Consider the dynamical system

ẋ1 = x2 − x22 + x21 and ẋ2 = −x1 − αx1x2 α ∈ R. (3.180)

Determine the value for the parameter α such that the system becomes a Hamiltonian

system. We compute div �F = 2x1 − αx1. According to proposition 1 this means that

(3.180) is only a Hamiltonian system when α = 2. Note that the Hamiltonian is supposed

to be defined on the whole of R2, such that we do not say here that (3.180) is a Hamiltonian

system for x1 = 0.

Having established when a dynamical system is a Hamiltonian system and how to derive

the Hamiltonian from it, we will next study some of the properties of these particular types

of systems.

3.8.1 Conserved quantities, conservation of energy along a trajectory

In physics Hamiltonians specify the energy of the system. We formulate here everything

for N = 2, but most statement can be generalised easily to generic values of N .

Theorem: The autonomous Hamiltonian H(x1, x2) is conserved along a trajectory. In

other words the total energy H(x1, x2) = E = const (this is how the constant is interpreted

in the context of physics) is a first integral and a constant of motion.

Proof: The derivative of H(x1(t), x2(t)) along a trajectory (x1(t), x2(t)) is given by

dH

dt
=

∂H

∂x1
ẋ1 +

∂H

∂x2
ẋ2 =

∂H

∂x1

∂H

∂x2
− ∂H

∂x2

∂H

∂x1
= 0, (3.181)

which means H(x1, x2) is constant along a solution (x1(t), x2(t)) and the trajectories lie

on contours defined by H(x1, x2) = E = const �.

This means the phase portrait is composed entirely from curves with constant H(x1, x2).

We can use this fact to derive a criterium which allows us to decide whether other

quantities are preserved in time. For any general function f(x1, x2, t) we have

df

dt
=

dx1
dt

∂f

∂x1
+

dx2
dt

∂f

∂x2
+

∂f

∂t
=

∂H

∂x2

∂f

∂x1
− ∂H

∂x1

∂f

∂x2
+

∂f

∂t
=: {f,H}+ ∂f

∂t
, (3.182)

where we have introduced the so-called Poisson bracket of f and H. This means the

Poisson bracket {f,H} characterizes the time-evolution of the function f . To say that
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the autonomous function f(x1, x2) is a constant of motion or conserved in time is therefore

equivalent to saying that the Poisson bracket of f and H is vanishing. This is generalized to

the definition of the Poisson bracket for any two arbitrary functions f(x1, x2) and g(x1, x2)

to

{f, g} := ∂f

∂x1

∂g

∂x2
− ∂f

∂x2

∂g

∂x1
. (3.183)

It is easy to verify that Poisson brackets satisfy the following properties. Poisson brackets

are

i) linear

{κf + λg, h} = {κf, h}+ {λg, h} = κ{f, h}+ λ{g, h}, κ, λ ∈ R, (3.184)

ii) anti-symmetric

{f, g} = −{g, f}, (3.185)

iii) satisfy the Jacobi identity

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0, (3.186)

iv) and obey the Leibniz rule

{f, gh} = g{f, h}+ {f, g}h. (3.187)

We leave it as an exercise to establish these properties. Knowing now how to determine

whether a quantity is conserved by means of Poisson brackets, the next theorem provides

us with a scheme which allows us to construct new conserved quantities from known ones.

Jacobi-Poisson theorem: The Poisson bracket of two constants of motion I 1(x1, x2, t)

and I 2(x1, x2, t) is also a constant of motion.

Proof: According to (3.182) the derivative of the Poisson bracket between I1(x1, x2, t) and

I2(x1, x2, t) results to

d

dt
{I1, I2} = {{I1, I2} ,H}+

∂

∂t
{I1, I2} , (3.188)

= −{{H, I1} , I2} − {{I2,H} , I1}+
{
∂I1
∂t

, I2

}
+

{
I1,

∂I2
∂t

}
, (3.189)

= {{I1, H} , I2} − {{I2,H} , I1}+
{
∂I1
∂t

, I2

}
−
{
∂I2
∂t

, I1

}
, (3.190)

=

{
{I1,H}+

∂I1
∂t

, I2

}
−
{
{I2,H}+

∂I2
∂t

, I1

}
, (3.191)

=

{
dI1
dt

, I2

}
−
{
dI2
dt

, I1

}
, (3.192)

= 0. (3.193)

From (3.188) to (3.189) we have used the anti-symmetry property (3.185), from (3.189)

to (3.190) the Jacobi identity (3.186), from (3.190) to (3.191) the linearity (3.184) and
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from (3.191) to (3.192) the relation (3.182). The last equality follows from the fact that

I1(x1, x2, t) and I2(x1, x2, t) are constants of motion. �

Therefore, given two conserved quantities this theorem can be used to construct addi-

tional constants of motion by computing their mutual Poisson bracket. Dynamical systems

for which this process can be persued until one has as many constants of motion as degrees

of freedom are very special.

Definition: An autonomous Hamiltonian system with N-degrees of freedom is said to be

integrable if it has N independent constants of motion Ij with 1 ≤ j ≤ N which are in

involution.

Definition: The set of constants of motion Ij is said to be in involution when all their

mutual Poisson brackets vanish, i.e.

{Ii, Ij} = 0 ∀i, j ∈ {1, 2, . . . N}. (3.194)

Definition: The set of constants of motion is said to be independent if none of the Ii
can be expressed in terms of the other constants Ij for i 	=j.

The definition for the Poisson brackets (3.183) to a system with higher degree of

freedom is easily achieved by

{f, g} :=
N/2∑

k=1

∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk
. (3.195)

Let us now return to our standard analysis of the classification of fixed points, limits

cycles etc, by making explicitly use of the fact that the systems under consideration are

Hamiltonian systems.

3.8.2 Fixed points of Hamiltonian systems

Recall the dynamical system or equation of motions for a Hamiltonian system (3.167).

From this follows that the condition for the fixed points read

∂H

∂x2
=

∂H

∂x1
= 0, (3.196)

which in turn means that the fixed points are stationary points of the HamiltonianH(x1, x2).

Theorem: Any nondegenerate (that means the Jacobian has nonzero eigenvalues) fixed

point of a Hamiltonian system is either a saddle point or a centre.

Proof: We compute the Jacobian matrix to

A =

(
∂2H
∂x1∂x2

∂2H
∂x2

2

−∂2H
∂x2

1

− ∂2H
∂x1∂x2

)∣∣∣∣∣
�xf

=:

(
H12 H22

−H11 −H12

)∣∣∣∣∣
�xf

. (3.197)

The eigenvalues are then obtained from

det(A− λI) = (H12 − λ)(−H12 − λ) +H11H22 = 0, (3.198)

such that

λ2 = −H11H22 +H2
12. (3.199)
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When the fixed point is nondegenerate we only have the two possibilities

H2
12 −H11H22

{
> 0 ≡ real eigenvalues of opposite sign ≡ saddle point

< 0 ≡ purely imaginary eigenvalues ≡ centre
, (3.200)

which is what we wanted to prove. �

At the same time, the condition (3.200) provides us with a criterium which allows to

determine the nature of a fixed for a Hamiltonian system.

3.8.3 Linear Hamiltonian systems

We have already seen that linear systems are very special as they can be dealt with very

systematically, to the extend that their characteristic behaviour is even classifiable. Let us

therefore study once more the linear systems which belong to the subclass of Hamiltonian

systems.

Example 1: Consider the Hamiltonian

H(x1, x2) =
1

2
κ2x21 +

1

2
x22 κ ∈ R. (3.201)

The corresponding dynamical system is linear

ẋ1 =
∂H

∂x2
= x2 and ẋ2 = −

∂H

∂x1
= −κ2x1. (3.202)

We compute H11 = κ2, H22 = 1 and H12 = 0. There-

Figure 20: Trajectories for κ = 1/2

and E = 0.5, 1, 2.

foreH2
12−H11H22 < 0 and (3.200) yields that the origin

is a centre. Since H(x1, x2) is conserved along a trajec-

tory (x1(t), x2(t)) it follows from

1

2
κ2x21 +

1

2
x22 = E, (3.203)

that the trajectories are ellipses in the phase plane with

axis length 2
√
2E and 2

√
2E/κ, see figure 20. The di-

rection of time follows from ẋ1 > 0 for x2 > 0 and

ẋ1 < 0 for x2 < 0, i.e. in the upper half plane all trajectories tend to the right and in the

lower half plane they all tend to the left. From (3.202) we can also derive a second order

differential equation for this system

ẍ1 + κ2x1 = 0, (3.204)

which is easily solved.

Example 2: Another standard example for a linear system is the Hamiltonian

H(x1, x2) = −
1

2
k2x21 +

1

2
x22 k ∈ R, (3.205)

where we only changed a sign with regard to example 1. The corresponding dynamical

system is

ẋ1 =
∂H

∂x2
= x2 and ẋ2 = −

∂H

∂x1
= k2x1. (3.206)
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Now we compute H11 = −k2, H22 = 1 and H12 = 0.

Figure 21: Trajectories for k = 1/2

and E = 0.5, 1, 2.

Therefore H2
12 −H11H22 > 0 and consequently (3.200)

yields that the origin is a saddle point. Since H(x1, x2)

is conserved along a trajectory (x1(t), x2(t)) it follows

from

−1

2
k2x21 +

1

2
x22 = E, (3.207)

that the trajectories are now hyperbolas in the phase

plane, see figure 21. Once again the direction of time

follows from ẋ1 > 0 for x2 > 0 and ẋ1 < 0 for x2 < 0, i.e. in the upper half plane all

trajectories tend to the right and in the lower half plane they all tend to the left. From

(3.206) we can also derive a second order differential equation for this system

ẍ1 − k2x1 = 0 (3.208)

which is easily solved.

3.8.4 Potential systems

Let us now be even more restrictive and consider Hamiltonians of a yet more specialised

form. The systems to be discussed in this section are ubiquitous in physics and allow for

a very intuitive interpretation.

Definition: A Hamiltonian system which is of the form

H(x1, x2) =
1

2
x22 + V (x1), (3.209)

where V (x1) is a function which only depends on x1 and not x2 is called a potential system

with potential (function) V (x1).

The equations of motion for such a system are

ẋ1 =
∂H

∂x2
= x2 and ẋ2 = −

∂H

∂x1
= − ∂V

∂x1
. (3.210)

and therefore the fixed points are determined by

x2 = 0 and
∂V

∂x1
= 0, (3.211)

which means the fixed points are at (ai, 0) where the ai are the stationary points of the

potential V (x1). Using now (3.200) we can classify the fixed points with regard to the

characteristics of the potential, since now H2
12 −H11H22 = V

′′

(x1). This means

V
′′

(x1) > 0 ⇒ centre at (a, 0) if V (a) is a minimum of V , (3.212)

V
′′

(x1) < 0 ⇒ saddle point at (a, 0) if V (a) is a maximum of V. (3.213)

We can confirm this result once more from first principles by looking at the linearization.

The Jacobian for the system (3.210) is computed to

A =

(
0 1

−V
′′

0

)

, (3.214)
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which means the characteristic equation for the eigenvalues is λ2 + V
′′

= 0. This implies

that for V
′′

< 0 we have real eigenvalues and therefore a saddle point and for V
′′

> 0

we have purely imaginary eigenvalues and therefore a centre, thus confirming (3.212) and

(3.213). We can now collect these informations.

Proposition 2: The fixed points for the Hamiltonian system described by

H(x1, x2) =
1

2
x22 + V (x1), (3.215)

are located at the points (ak, 0) with k = 1, 2, 3, . . ., where the ak are stationary points of

the potential V (x1). If V (ak) is a minimum then the point (ak, 0) is a centre and if V (ak)

is a maximum the point (ak, 0) is a saddle point.

Let us look at some examples in order to see how to exploit what we found so far.

Example 1: Returning to our examples for linear systems we note that (3.201) was in fact

a potential system with V (x1) = 1/2κ2x21. Clearly at the point x1 = 0 the potential V has

a minimum such that from proposition 2 follows that at (0, 0) we have a centre. For (3.205)

we have the potential V (x1) = −1/2k2x21, for which the point x1 = 0 is a maximum. It

follows then from proposition 2 at (0, 0) we have a saddle point, which confirms our previous

findings.

Example 2: Let us next consider the potential

Figure 22: Phase portrait from cubic potential

V (x1) =
1

2
x21 −

1

3
x31. (3.216)

We compute for this V ′(x1) = x1 − x21,

which means the stationary points obtained

from V ′(x1) = 0 are x1 = 0, 1. Next we

compute from V
′′

(x1) = 1−2x1 that V
′′

(0) =

1 and V
′′

(1) = −1, which means that there
is a minimum of the potential at x1 = 0 and

a maximum at x1 = 1. In turn this implies

for the phase space that at (0, 0) we have a

centre and at (1, 0) we have a saddle point.

The corresponding dynamical system is

ẋ1 = x2 and ẋ2 = −
∂V

∂x1
= x21− x1.

(3.217)

The trajectories are computed by noting

from the theorem on energy conservation

(3.181) that

x2 = ±
√
2 [E − V (x1)], (3.218)

which follows directly by setting the Hamiltonian in (3.209) equal to E and then solving

it for x2. This means by choosing one particular value for the constant E, we can plot

the entire trajectory. The values at x2 = 0 are very distinct because in that case we have
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E = V (x1). (In the notion of physics this means that p = 0 and all the kinetic energy is

contained in the potential V (x1).) In order to find the corresponding values for E we have

to solve the cubic equation
1

3
x31 −

1

2
x21 +E = 0. (3.219)

Unlike as for instance for a quadratic equation, there are no simple closed formulae for the

real solutions of cubic equations, but there are simple criteria which allow us to make a

statement about the amount of real solutions. For this we have to bring the equation into

its normal form

x31 + rx21 + sx1 + t = 0. (3.220)

The coefficients of this equation are used to define the auxillary quantities

p :=
3s− r2

3
and q :=

2r3

27
− rs

3
+ t. (3.221)

Using p and q one may then compute the quantity

D :=
(p
3

)3
+
(q
2

)2
. (3.222)

Now one knows that for

D > 0⇒ ∃ one real solution to (3.220),
D < 0⇒ ∃ three real solutions to (3.220). (3.223)

We will not derive (3.223) here, but simply employ it10. Converting (3.219) into the form

(3.220)

x31 −
3

2
x21 + 3E = x31 + rx21 + sx1 + t = 0 (3.224)

we read off r = −3/2, s = 0 and t = 3E. Therefore (3.221) yields p = −3/4 and

q = 3E − 1/4, such that from (3.222)

D =
9

4
E

(
E − 1

6

){
> 0 for E < 0 or E > 1/6

< 0 for 0 < E < 1/6.
(3.225)

Therefore we have only one real solution when for E < 0 or E > 1/6 and three real solutions

when 0 < E < 1/6. Notice that depending on the initial condition not all solutions are

realized. For instance for x1 < 1 only the two solutions in the valley are energetically

possible. In order to reach the third one the particle would have to overcome the potential

barrier with E = 1/6, which is not possible. Taking the initial condition on the right of

the barrier, i.e. x1 > 1, leads just to one realized real soltution as in that case the other

two are shield off by the potential barrier.

The separatrix is passing through the saddle point, which we found to be at (1, 0).

The equation of the separatrix is therefore determined by

H(1, 0) =
1

6
=

1

2
x22 +

1

2
x21 −

1

3
x31, (3.226)

10For more background and explanations about how this can be derived, see for instance

http://en.wikipedia.org/wiki/Cubic_function or http://mathworld.wolfram.com/CubicFormula.html.
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such that

x2 = ±
√

1

3
+

2

3
x31 − x21. (3.227)

The separatrix is indicated by the thick line in figure 25. There are three qualitatively

different regimes: Inside the loop of the separatrix all motion is bounded, i.e. there a

particle has energy E < 1/6 which is less than it needs to overcome the barrier and is

therefore trapped by the potential. When it has E > 1/6 the motion is unbounded. The

particle will just move over the barrier and then fall down the potential and thus becoming

faster and faster. When E < 0 the motion is also unbounded and the particle will just

fall further down the potential. The direction of time follows from ẋ1 > 0 for x2 > 0 and

ẋ1 < 0 for x2 < 0, i.e. in the upper half plane all trajectories tend to the right and in the

lower half plane they all tend to the left.

Example 3: Next consider the potential

Figure 23: Phase portrait from cosine-potential

V (x1) = − cosx1. (3.228)

We compute for this V ′(x1) = sinx1, which

means the stationary points obtained from

V ′(x1) = 0 are x
(n)
1 = nπ with n ∈ Z.

Next we compute from V
′′

(x1) = cosx1
that V

′′

(2nπ) = 1 and V
′′

[(2n − 1)π] =

−1, which means that there are minima of
the potential at x1 = 2nπ and maxima at

x1 = 1. By proposition 2 this implies for

the phase space that at (2nπ, 0) we have a

centres and at ((2n−1)π, 0) we have a sad-

dle points. The corresponding dynamical

system is

ẋ1 = x2 and ẋ2 = −
∂V

∂x1
= − sinx1,

(3.229)

such that we obtain the second order dif-

ferential equation

ẍ1 + sinx1 = 0. (3.230)

Since the separatrices pass through the saddle points, the determing equation for them is

H[(2n− 1)π, 0] = − cos[(2n− 1)π] = 1 =
1

2
x22 − cosx1. (3.231)

Therefore the separatrix is given by

x22 = 2(1 + cosx1) = 4 cos2
(x1
2

)
⇒ x2 = ±2 cos

(x1
2

)
. (3.232)

We indicated the separatrix in figure 23 by the thick line. When the energy constant is

E < 1 the motion is inside the separatrix and is bounded. The particle is trapped inside
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the different values of the potential. Whereas when E > 1 the motion is unbounded. The

particle will just move over all maxima and just slows down a bit when it passes a valley.

As always in potential systems, the direction of time follows from ẋ1 > 0 for x2 > 0 and

ẋ1 < 0 for x2 < 0, i.e. in the upper half plane all trajectories tend to the right and in the

lower half plane they all tend to the left.

Example 4: Next consider some generic potential such as the one depicted in figure 24.

It is clear from the above example that

Figure 24: Phase portrait from arbitray poten-

tial

we can sketch the phase portraits related

to any type of potential, even if we do not

know the function explicitly. We can iden-

tify the maxima and minima graphically

and indicate the the corresponding saddle

points and centres, respectively. For energy

values below maxima, i.e. inbetween poten-

tial barriers, we always have bounded mo-

tion. When the energy constant has a value

above a certain potential barrier we have

an unbounded motion with regard to that

barrier, but the motion might be bounded

by an additional maxima, as exemplified in

figure 24. We also know the phase portrait

is symmetric about the x1-axis. Since we

always have ẋ1 = x2 for potential systems,

the direction of time of all trajectories in

the upper half plane is always to the right

and in the lower half plane always to the

left. More explicitly we can compute all

trajectories from (3.218) for fixed values of the energy constant.

Example 5: Show that the equation ẍ+ x+ x3 = 0 has only periodic solutions.

Using the transformation (3.2), we first convert this equation into two first order equa-

tions

ẋ1 = ẋ = x2, (3.233)

ẋ2 = −x1 − x31. (3.234)

The fixed points are computed easily from x2 = 0 and x1+x31 = 0, i.e. the only fixed point

is the origin (0, 0). Let us first check if this system is a Hamiltonian system. According to

(3.174) we have to compute

div �F =
∂x2
∂x1

+
∂

∂x2
(−x1 − x31) = 0, (3.235)

and conclude that the system is Hamiltonian. We can therefore attempt to compute the
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Hamiltonian. We find

∂H
∂x2

= x2 = ẋ1 ⇒ H =
x2
2

2 + f(x1)

− ∂H
∂x1

= −x1 − x31 = ẋ2 ⇒ H =
x21
2 +

x41
4 + f̃(x2)

}

⇒ H =
1

2
x22+

1

2
x21+

1

4
x41+c. (3.236)

This means the system is also a potential system with potential

V (x1) = x21/2 + x41/4, (3.237)

when setting the constant c to zero. We have therefore three possibilities to analyse the

system i) treating it as a standard dynamical system, ii) exploiting the fact that it is a

Hamiltonian system or iii) making use of the fact that it is also a potential system.

i) Computing the Jacobian matrix at the origin gives

A =

(
0 1

−1 0

)

(3.238)

such that the eigenvalues are λ± = ±i. The eigenvalues are purely imaginary and therefore

the origin is a centre.

ii) Computing H11 = 1+ 3x21
∣∣
(0,0)

, H22 = 1 and H12 = 0 gives H2
12 −H11H22 = −1 < 0,

such that according to (3.200) the origin has to be a centre.

iii) The potential V (x1) = x21/2 + x41/4 has a minima a x1 = 0 and therefore

we deduce from (3.212) that the origin is a centre. Since the

Figure 25: Phase portrait

from potential (3.237).

potential tends to inifinity for x → ±∞ we conclude that

all motion in this potential is bounded and all trajectories

are closed. This means all solutions for the Hamiltonian sys-

tem are periodic and therefore all solutions to the differential

equation are periodic.

We note that there is no contradiction between the differ-

ent viewpoints, but clearly regarding the system as a potential

system allows to draw more detailed conclusions. From i) and

ii) we deduce properties about the nature of the fixed point,

whereas exploiting the fact that the system is also a poten-

tial system allows in addition to draw conclusions about the

nature of the entire phase portrait.

3.8.5 Period of a periodic motion

Let us now have a closer look at example 5 and determine the period of the system, i.e. the

time T it takes to move from a particular point (x01, x
0
2) along a trajectory and return to the

same point. In order to obtain this time we have to integrate along the closed trajectory,

say C, over time
T =

∮

C

dt =

∮

C

dx1
ẋ1

=

∮

C

dx1
x2

. (3.239)
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Denoting the points where the trajectories intersect the x1-axis by (α1, 0) and (α2, 0) this

becomes

T =

α2∫

α1

dx1√
2 [E − V (x1)]

+

α1∫

α2

dx1

−
√
2 [E − V (x1)]

= 2

α2∫

α1

dx1√
2 [E − V (x1)]

, (3.240)

where we have used the relation (3.218). Let us compute this period for the potential in

(3.237). First of all we have to determine the intersection points (α1, 0) and (α2, 0) with

the x1-axis. For a fixed energy constant E we can find these values from

H(α, 0) = E =
1

2
α2 +

1

4
α4. (3.241)

Since this equation is symmetric in α, i.e. H(α, 0) = H(−α, 0) the period for this particular
case becomes

T = 2

α∫

−α

dx1√
2
[
E − 1

2x
2
1 +

1
4x
4
1

] = 4

α∫

0

dx1√
2
[
E − 1

2x
2
1 − 1

4x
4
1

] . (3.242)

To be able to evaluate this further we need some initial condition. Taking for instance for

corresponding differential equation x(0) = 1 and ẋ(0) = 0 translates into x1(0) = 1 and

x2(0) = 0. We can compute the corresponding energy constant for these conditions from

H(1, 0) =
1

2
+

1

4
=

3

4
= E, (3.243)

such that (3.242) becomes

T = 4

1∫

0

dt
√
2
[
3
4 − 1

2t
2 + 1

4t
4
] = 4

√
2

1∫

0

dt√
3− 2t2 + t4

. (3.244)

This is an elliptic integral of the first kind, which in integral tables is usually given in the

form11

F (φ,m) =

∫ φ

0

dθ
√
1−m sin2 θ

. (3.245)

Using a variable transformation we can relate this to the form we need in (3.244). Defining

t = sin θ we have dθ = dt/
√
1− t2, such that

F (φ,m) =

∫ arcsinφ

0

dt
√
(1− t2)(1−mt2)

=

∫ arcsinφ

0

dt
√
1− (1 +m)t2 +mt4

. (3.246)

Computing then

−iF (i/2 ln 3,−3) = −i

∫ i/
√
3

0

dt√
1 + 2t2 − 3t4

=

1∫

0

dt√
3− 2t2 + t4

, (3.247)

yields therefore the period for our system in form of an elliptic integral of the first kind

T = −i4
√
2F (i/2 ln 3,−3). (3.248)

11See for instance http://integrals.wolfram.com/.
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3.8.6 Non-potential Hamiltonian systems

Clearly not all Hamiltonian systems are potential systems, but we can still have periodic

motions in this case. Let us study the following example for this

H(x1, x2) =
x22

2(1 + x21)
+

1

2
x21, (3.249)

which is obviously not of the form (3.209) and therefore not a potential system. The

equations of motion are derived from (3.167)

ẋ1 =
∂H

∂x2
=

x2
(1 + x21)

and ẋ2 = −
∂H

∂x1
=

x22x1
(1 + x21)

2
− x1. (3.250)

The fixed point is easily found to be the origin, i.e. (0, 0). The nature of the fixed point

results from the criterium (3.200). We calculate for this

H11 = − ∂

∂x1

(
x22x1

(1 + x21)
2
− x1

)
= − x22

(1 + x21)
2
+

4x22x
2
1

(1 + x21)
3
+ 1, (3.251)

H22 =
∂

∂x2

(
x2

(1 + x21)

)
=

1

(1 + x21)
, (3.252)

H12 = − 2x1x2
(1 + x21)

2
, (3.253)

Therefore

H2
12 −H11H22

∣∣
(0,0)

= −1 < 0 (3.254)

which implies by (3.200) that the origin is a centre. This means all trajectories are periodic.

Let us compute the corresponding period T in (3.239) which is now of course not of the

special form (3.240). First we compute the intersections with the x1-axis from

H(α, 0) = E =
1

2
α2 ⇒ α = ±

√
2E, (3.255)

such that we have to demand that these constants are positive, i.e. E > 0. The trajectories

are found from

H(x1, x2) =
x22

2(1 + x21)
+

1

2
x21 = E ⇒ x2 = ±

√
(2E − x21)(1 + x21). (3.256)

According to (3.239) the period is therefore

T =

∮

C

dt = 2

α∫

−α

dx1
ẋ1

= 2

√
2E∫

−
√
2E

(
1 + x21
x2

)
dx1 = 2

√
2E∫

−
√
2E

√
1 + x21
2E − x21

dx1 (3.257)

= 4El(−2E) for E > 0, (3.258)

where El(m) denotes a complete elliptic intgral of the second kind usually found in integral

tables in the form

El(m) =

∫ 1

0

√
(1−m sin2 θ)dθ. (3.259)
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