
MA3608 , Andreas Fring, Dynamical Systems II

Dynamical Systems II

Solutions and marking scheme

������������: Full marks correspond to 60 marks.

1) Consider the dynamical system

ẋ1 = 2cosx1 − cosx2,
ẋ2 = 2cosx2 − cosx1,

(i) In order to find the fixed points solve 2

2 cosx1 − cosx2 = 0 and 2 cosx2 − cosx1 = 0.

We find infinitely many fixed points

x
(n,m)
F =

�
±π
2
+ 2πn,±π

2
+ 2πm

�
with n,m∈ Z.

(ii) In the region 6

D = {(x1, x2) : −π ≤ x1 ≤ π,−π ≤ x2 ≤ π} ,

we have four fixed points

x
(1)
F =

�
−π
2
,−π
2

�
, x

(2)
F =

�
−π
2
,+
π

2

�
, x

(3)
F =

�
+
π

2
,−π
2

�
, x

(4)
F =

�π
2
,
π

2

�
.

We compute the Jacobian matrix to

A(x1, x2) =

�
−2 sinx1 sinx2
sinx1 −2 sinx2

�

.

Then

A(x
(1)
F ) =

�
2 −1
−1 2

�

, A(x
(2)
F ) =

�
2 1

−1 −2

�

,

A(x
(3)
F ) =

�
−2 −1
1 2

�

, A(x
(4)
F ) =

�
−2 1

1 −2

�
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Next we compute the eigenvalues of A(xF )

det

�

A(x
(1)
F )− λ

�
1 0

0 1

��

= λ2 − 4λ− 3 = 0⇒ λ1 = 3, λ2 = 1,

det

�

A(x
(2)
F )− λ

�
1 0

0 1

��

= λ2 − 3 = 0⇒ λ1/2 = ±
√
3,

det

�

A(x
(3)
F )− λ

�
1 0

0 1

��

= λ2 − 3 = 0⇒ λ1/2 = ±
√
3,

det

�

A(x
(4)
F )− λ

�
1 0

0 1

��

= λ2 + 4λ+ 3 = 0⇒ λ1 = −1, λ2 = −3, .

This means the linearization theorem can be applied for all fixed points. x
(1)
F is

an unstable node, x
(4)
F is a stable node and x

(2)
F and x

(3)
F are saddle points.

(iii) We compute the eigenvectors for A(x
(1)
F ) to 10

v
(1)
1 =

�
−1
1

�

and v
(1)
2 =

�
1

1

�

.

This means the matrix U (1) = {v(1)1 , v
(1)
2 } can be used to transform A into the

Jordan normal form. Therefore

�
U (1)

�−1
A(x

(1)
F )U

(1) =

�
3 0

0 1

�

.

The local phase portraits for the linearized system related to {{3, 0}, {0, 1}} and

A(x
(1)
F ), respectively, results to:

Next we compute the eigenvectors for A(x
(2)
F ) to

v
(2)
1 =

�
−2−

√
3

1

�

and v
(2)
2 =

�
−2 +

√
3

1

�

.
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This means the matrix U (2) = {v(2)1 , v
(2)
2 } can be used to transform A into the

Jordan normal form. Therefore

�
U (2)

�−1
A(x

(2)
F )U

(2) =

�√
3 0

0 −
√
3

�

.

The local phase portraits for the linearized system related to {{
√
3, 0}, {0,−

√
3}}

and A(x
(2)
F ), respectively, results to:

Next we compute the eigenvectors for A(x
(3)
F ) to

v
(3)
1 =

�
−2 +

√
3

1

�

and v
(3)
2 =

�
−2−

√
3

1

�

.

This means the matrix U (3) = {v(3)1 , v
(3)
2 } can be used to transform A into the

Jordan normal form. Therefore

�
U (3)

�−1
A(x

(3)
F )U

(2) =

�√
3 0

0 −
√
3

�

.

The local phase portraits for the linearized system related to {{
√
3, 0}, {0,−

√
3}}

and A(x
(3)
F ), respectively, results to:
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Next we compute the eigenvectors for A(x
(4)
F ) to

v
(4)
1 =

�
1

1

�

and v
(4)
2 =

�
−1
1

�

.

This means the matrix U (4) = {v(4)1 , v
(4)
2 } can be used to transform A into the

Jordan normal form. Therefore

�
U (4)

�−1
A(x

(4)
F )U

(4) =

�
−1 0

0 −3

�

.

The local phase portraits for the linearized system related to {{−1, 0}, {0,−3}}
and A(x

(4)
F ), respectively, results to:

(iv) The isocline dx2/dx1 = 1 is computed from 1

dx2
dx1

=
ẋ2
ẋ1
=
2 cosx2 − cosx1
2 cosx1 − cosx2

= 1 ⇒ x1 = x2.

(v) Assemble the information from (ii), (iii), (iv) we obtain 6
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�
= 25

2) We have the Lyapunov stability theorem: Consider the system �̇x = �F (�x) with a 5

fixed point at the origin. If there exists a real valued function V (�x) in a neighbourhood

N(�x = 0) such that:

i) the partial derivatives ∂V/∂x1, ∂V/∂x2 exist and are continuous,

ii) the function V (�x) is positive definite,

iii) dV/dt is negative semi-definite (definite),

then the origin is a stable (asymptotically stable) fixed point.

A function V for which the conditions i)-iii) hold with iii) (definite) semi-definite is

called a (strong) weak Lyapunov function.

Clearly i) and ii) are satisfied. For the dynamical system

ẋ1 = −x1 + 4x2, ẋ 2 = −x1 − x32.

and V (x1, x2) = x21 + λx
2
2 we compute

V̇ =
dV

dt
=
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= 2x1 (−x1 + 4x2) + 2λx2
�
−x1 − x32

	

= −2x21 + (8− 2λ)x1x2 − 8x42
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∴ for λ = 4 we have V̇ (�x = �0) = 0 and V̇ (�x) < 0.

∴ ∃ a neighbourhood of the origin in which V̇ is negative definite.

∴ V [�x(t)] is a strong Lyapunov function on R2.
�
= 5

3) We consider the dynamical system

ẋ1 = x1(1− 4x21 − x22)−
1

2
x2(1 + x1), (1)

ẋ2 = x2(1− 4x21 − x22) + 2x1(1 + x1). (2)

(i) We compute the Jacobian matrix at the origin: 4

A(0, 0) =

�
1 −12
2 1

�

.

The eigenvalues are obtained from

det

�

A(0, 0)− λ
�
1 0

0 1

��

= λ2 − 2λ+ 2 = 0⇒ λ± = 1± i.

This means the origin is an unstable focus.

(ii) With x1 = r cosϑ and x2 = r sinϑ we obtain 15

ẋ1 = ṙ cosϑ− r sinϑϑ̇
= r cos(ϑ)

�
−r2 sin2(ϑ)− 4r2 cos2(ϑ) + 1

	
− 1
2
r sin(ϑ)(r cos(ϑ) + 1) (3)

ẋ2 = ṙ sinϑ+ r cosϑϑ̇

= r sin(ϑ)
�
−r2 sin2(ϑ)− 4r2 cos2(ϑ) + 1

	
+ 2r cos(ϑ)(r cos(ϑ) + 1) (4)

where x21 + x
2
2 = r

2. Computing (3) × cosϑ + (4) × sinϑ gives

ṙ = −r3 sin4(ϑ)− 4r3 cos4(ϑ)− 5r3 sin2(ϑ) cos2(ϑ) + 3
2
r2 sin(ϑ) cos2(ϑ)

+r sin2(ϑ) + r cos2(ϑ) +
3

2
r sin(ϑ) cos(ϑ)

= −1
8
r
�
12r2 cos(2ϑ) + 20r2 − 3r sin(ϑ)− 3r sin(3ϑ)− 6 sin(2ϑ)− 8

	

For r = 2 we obtain

ṙ =
1

4
(6 sin(ϑ) + 6 sin(2ϑ) + 6 sin(3ϑ)− 48 cos(2ϑ)− 72)

Even if we assume 6 sin(ϑ) + 6 sin(2ϑ) + 6 sin(3ϑ)− 48 cos(2ϑ) = 66, which can

never happen for the same ϑ, we have ṙ < 0 for r = 2.

For r = 1/8 we obtain

ṙ =
1

64



3 sin(ϑ)

8
+ 6 sin(2ϑ) +

3

8
sin(3ϑ)− 3

16
cos(2ϑ) +

123

16

�
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Even if we assume3 sin(ϑ)8 +6sin(2ϑ)+ 3
8 sin(3ϑ)− 3

16 cos(2ϑ) = −38−6− 3
8− 3

16 =

−11116 , which can never happen for the same ϑ, we have ṙ > 0 for r = 1/8.

Therefore any trajectory which enters the region D can never leave it. If there

is no fixed point in D, then we can employ the Poincaré-Bendixson theorem to

deduce that there is at least one limit cycle in D.

We show that (0, 0) is the only fixed point. For instance compute RHS of

(2)x1−RHS of (1)x2 = 0

0 = 2x21(1 + x1) +
1

2
x22(1 + x1) =



2x21 +

1

2
x22

�
(1 + x1)⇒ x1 = −1

Substituting x1 = −1 into RHS (1)= 0 gives (1 − 4− x22) = 0, which does not

have a real solution for x2.

(You can also use x1 = r/2 cosϑ and x2 = r sinϑ which translates into the

simpler equation ṙ = r(1− r2).)
(iii) For the function V (x1, x2) =

�
1− 4x21 − x22

	2
and the system (1), (2) we compute 7

V̇ =
dV

dt
=
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2,

= −16x1
�
−4x21 − x22 + 1

	

x1
�
−4x21 − x22 + 1

	
− 1
2
(x1 + 1)x2

�

−4x2
�
−4x21 − x22 + 1

	 �
2x1 (x1 + 1) + x2

�
−4x21 − x22 + 1

		
,

= −4
�
4x21 + x

2
2 − 1

	
2
�
4x21 + x

2
2

	
.

Since
�
4x21 + x

2
2

	
> 0 and

�
4x21 + x

2
2 − 1

	
2 > 0 we deduce that V̇ < 0. This

means for t → ∞ we obtain V (x1, x2) = 0 which means we always reach the

ellipse 1− 4x21−x22 = 0. Since no point on the ellipse is a fixed point it must be

a limit cycle.

(iv) The α-limit sets and ω-limit sets are found to be 4

Lα(�x) =






(0, 0) for 4x21 + x
2
2 < 1

ϕE for 4x21 + x
2
2 = 1

∅ for 4x21 + x
2
2 > 1

Lω(�x) =

�
(0, 0) for r = 0

ϕE for r �= 0 ,

where we denoted the ellipse by ϕE .
�
= 30
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