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Dynamical Systems ||

Solutions and marking scheme for coursework 2

INSTRUCTIONS: Full marks correspond to 40 marks.

1) (i) A dynamical system @
&1 = Fi(z1,22) and &y = Fy(w1,22),

is a Hamiltonian system if and only if

0F, n 0F,

. F—; _ 9 or2
div 8%1 &%2

=0.

For the given system we therefore have

Fi(z1,22) = afrizdexpl(a+)ad] + 4x1 + 22,
Fy(z1,20) = a%‘f:c% exp|(a + 'y)x:f] + (a + B)z123 exp|(a + ’y):c‘;’] + 2vyxa,

We then compute

0F,
dry
(23
81'2

= 3afzrizi(a + 7)6x§(a+7) + ZangxleI?(a-W) 14,
=27+ 3a x2w4e$1(0‘+7) + 3a321 (o + B)ex?(“ﬂ),

such that
0Fy  OF:
il i’
ox1  Oxa
This is vanishing for a) «a =0, 5=0,y=—-2orb) a =9, =-9/7, v = —2.
(73) In order to find the Hamiltonian we now have to integrate

OH OH
—8 = Fl(SL‘l,SL‘Q) and _— = *Fg(l‘l, :E‘Q).
€2

&’El

= 2(y +2) + 2123”1 35 4 o (28 + 32} (@B + o + B7) + 3)]

Case a)

oH 2
= 4x1 + 29 =>H=4$1$2+%+f($1>

— = 4y = H = da125 + f(22)
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Therefore comparing the two expressions

3
H(zy,29) =419 + —= + €.

2
Case b)
OH 81 27 2
— = ——ehi’x%x% +xo4+4r; = H= ——emifat%m% +2 4 dx1xe + f(21)
4D 7 7 2
OH 54 27 N
e —81€7I?$§1‘% — 767“’%‘3301 +4xo = H = —7671’?30%30% +4x129 + f(22)

Therefore comparing the two expressions

27

3
- e a2 ed + dayao + c.

2
xT
H(SULLUQ):?Q*

(77) We integrate

oOH x2
Dt H = =2
81’2 o = B) + f(l‘l)
oH 1 -
o 2coshxysinhxy — 423 = H = 3 cosh(2z1) — a1 + f(x2)
1
Therefore

2
H(xy,m9) = % +sinh?z; — 2] + ¢

This is a potential system with potential V (z) = sinh®z1 — 2% + c.
We require V' (0) = 0, such that ¢ = 0.

(iv) Respectively, the potential and the phase portrait are:
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A sketch without the precise values of the minima and maxima is sufficient here.
However, a reasoning for the direction of time should be provided, i.e. &1 > 0
in the upper half plane and therefore the arrows point to the right, whereas in
the lower half plane #; < 0 such that the arrows point to the left. Notice all

motion is bounded as the potential tends to infinity for x — 4oc.

(i) The fixed points are found by solving:

x = F(z) = 3z — 3\z + \z?

We find z; =0 and 23 =3 — 2/ .

The stability of the fixed point xy is guaranteed iff |F'(zf)| < 1. With F'(z) =

3 — 3+ 2 \x we find

2 4
|F'(z1)] <1 for§<>\<§,
{F’(scg)‘ <1 for0<)\<§.

Thus the fixed point xo = 3 — 2/ is stable for 0 < A < % and the fixed point

z1 = 0 is stable for%<>\<%.

(1) A 2-cycle is determined by the solution of

> =20




MA3608 , Andreas Fring, Dynamical Systems II

v = F(F(z)),
= A2t — 60323 + 60223 + 9N322 — 210222 + 12222 + 9 %2 — 18)\z + 9.

Since the fixed point also solves this equation we can devide out the factor
F(z) —z from F (F(x)) — =

F(F(z))—z: F(z) —z =X 2+ (4A = 3)\?) 2 +4 - 3\

Setting this to zero we find the two points of the two cycle

32 V3v3\—4x3
I S e

For these points to be real we require

A>

Wl =

Thus a two cycle exists for A > %. (Notice for A = 4/3 we have x4 = z_ such
that the 2-cycle becomes a one point, i.e. a fixed point.)

(i13) The 2-cycle is stable iff |G'(z¢)| < 1 with G(z) = F (F(x)). Since G'(z4) =
G'(x_) = F'(z_)F'(x4) we compute

F'(z)F'(zy) =1+ 12X — 6)%

With A .
1+ 120 = 6N <1 for o <A< 2(2+V0)

we find the domain of stability for the 2-cycle to be % <A< %(2 +/6). > =20



