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MA3608 Dynamical Systems Il

Solutions and marking scheme for exam January 2009

INSTRUCTIONS: Full marks are obtained for correct answers to three of the five questions.

Each question carries 20 marks.

1. We have

T = xlxg — 9z — 16x§

To = 4m1x§ + 2%‘21‘%

(i) Lyapunov stability theorem: Consider the system i = X (Z) with a fized
point at the origin. If there exists a real valued function V(Z) in a neighbourhood
N(Z =0) such that:

a) the partial derivatives OV /0x1, OV/0xa exist and are continuous

b) the function V(&) is positive definite

c) dV/dt is negative semi-definite (definite)

then the origin is a stable (asymptotically stable) fixed point.

Def.: A function V' for which the conditions i)-iii) hold with iii) semi-definite

1s called weak Lyapunov function.

Def.: A function V' for which the conditions i)-iii) hold with iii) definite is
called strong Lyapunov function.

Verify the requirements a)-c) for V(z1,x2) = 427 + 1623
a) Clearly the partial derivatives OV/0x1, OV /0x exist and are continuous.
b) -V (0,0) =0 and V(z1,x2) > 0 for (z1,22) # 0
= the function V(z1,z2) = 42% + 1623 is positive definite
¢) Compute dV/dt: @

V= 8—V¢1 + 6—‘/9'62
6901 6.%2
= 81‘1(%‘11‘% — 921 — 16x§) + 321‘2(41‘11‘% + 21‘2%‘%)
= 8x?x3 — 72221282123 + 128z 5 + 64a327
= —822[9 — x3(1 + 8)]

= —7223(1 — 23)
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(iii)

=V =0 for (0, zy)
=V <0 for |z] < 1
= is negative semi-definite

= V is a weak Lyapunov function

= by the Lyapunov stability theorem follows that the origin is a stable fixed
point.

For |z2| < 1 all points inside the level curve of V(x1,22) = 42? + 1623 will be
dragged to the origin.

2
= 422 + 1622 < 16 :>%+sc§<1

= the length of the minor is 2 and the length of the major is 4.

Corollary: Let V(Z(t)) be a weak Lyapunov function for the system & = X ()
in a neighbourhood of an isolated fized point &y = (0,0). Then if V40 ona
trajectory, except for the fixed point, the origin is asymptotically stable.

For (0,z2) the dynamical system reduces to i1 = —16z3 and ia = 0.

This means the line (0, z2) is not a trajectory and therefore it follows from the
corollary that the origin is asymptotically stable.

2. We have

(4)

i’l :xl—xg—xif

. 3
To = X1+ Tog — X5

With 21 = rcos? and x5 = rsind we obtain
i1 = 7 cosd — rsindd = rcostd — rsing — 3 cos® Y (1)
iy = 7sin® +rcos¥) = rsin®d + rcos v — 13 sin® ) (2)
computing: (1) x cos? + (2) x sin:
i = rcos® ¥ + rsin® 9 — r3(cos ¥ + sin? )

2
=r|l- Z(3+cos419)

computing: (1) xsin¥ - (2) x cost:
) =1 — 13 sin® 9 cos ¥ 4 3 cos® I sin ¥
dividing by r:
¥ =1 —r?sind cos I(sin® ¥ — cos® V)

2
=1- Esin219c08219

2

=1- Tzsin419

> =20
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(i)

(iii)

For a further fixed point to exist we need to solve

2 2
1—2(3—1—005419):0 and 1—Zsin429:0

Substiting r? = —4/sin44 into the first equation yields
3+ cos4d +sin4d = 0,

which has no solution. Therefore we have no further fixed point.

—

Poincaré-Bendixson theorem: Let ¢, be a flow for the system 7= X(x)
and let D be a closed, bounded and connected set D € R?, such that ¢,(D) C D
for all time. Furthermore D does not contain any fized point. Then there exists
at least one limit cycle in D.

for r = 1/3 we compute:

.1 1
r=3 [1%(3+cos419)} >0

for r = 2 we compute:
7 =2[1—(34cos4d)] <0

= trajectories which enter the region

Dz{(r,ﬂ):%SrﬁQ}

do not leave it anymore.

= Since there is no fixed point in D, see (i), we can employ the Poincaré-
Bendixson theorem to deduce that there is at least one limit cycle in D.
Bendixson’s criterium: Let D be a simply connected region of the phase plane

in which the function X (&) of the system T = X (&) has the property that its
divergence is of constant sign, i.e.

IS QELCLS RURLCCLC R ST Q.S S S
8$1 81‘2 81‘1 8$2

Then the system has no closed orbit contained entirely in D.

We also have the theorem: A limit cycle contains at least one fized point.
For the system
{ﬁl = 1’% — X9 — 1

i‘g = 1T — 21‘2
we compute

<0 for 1 < 2/3

> 0X;  0X
divX:671+672:3x1—2: =0 foraz =2/3
! 2 >0 for 1 > 2/3
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3.

This means if a limit cycle exists it has to cross the line z; = 2/3.

Find the fixed points from

x%—:@—l:o and x1x9 — 229 = 0.

This yields

7V =(-10, =10, V=3

We also have

T = _g — 9, To = §x2 — 210 for 1 = 2/3,

i =22 -1, Ea =0 for zo = 0.

This means we can never encircle a fixed point and cross the z; = 2/3 at the

same time. We assemble these data into the following figure
| {d‘ 34
&l

[

ll'.'?—l—

f wi—

(7) In one dimension Bifurcation theory investigates how the number of steady solu-
tions of the system & = F'(x, A) depend on the parameter A. A bifurcation occurs
if the solution of & = F(z, \) changes its qualitative behaviour as A varies.
Def.: Let (z0,Xo) be a fized point for the system @ = F(x, A). If OF /0|, x) #
0 and ON/Ox changes sign at (zo, A\o), then (xo, No) is called a turning point.
Def.: Let (z0,Xo) be a fized point for the system @ = F(x, A). If OF /O, x) =
0 and OF/0z| (4, o) = 0 and if through (zo, Xo) pass two and only two braches of

the equilibrium curve which have both distinct tangents at (xg, Ng), then (xg, Ao)
is called a transcritical bifurcation.

Def.: Let (w0, \o) be a fived point for the system & = F(x, A).If OF /O, x) =
0 and OF/0x|(, z,) = 0 and d)\/dz changes sign on one branch of the equilib-

S =20

rium curve with distinct tangents, then (xo, Ag) is called a pitchfork bifurcation.
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—

(i) We have the following corollary: Suppose that for the system Z = X (Z)we
have transformed the linearized system T = AZ with the help of ¥ = Uy into the
Jordan normal form

j=UAUG = Jj = (0 “’>, (3)
w0

—

where T = U7, §= Y (y). Then if the stability index
I=w (Y1111 + Vi + Yo + Y2222)+Y111(Y121*Y112)+Y222(Y122*Y212)+Y121Y122*Y212Y112

computed from is negative, the origin is asymptotically stable.

We compute the Jacobian for the system

i’l = 71’2 {ﬁg = —(1’% - )\)(EQ - 7{E1 - 21’?

a=(%0)

Note this is already in Jordan normal form, such that A = J and X =Y.
Therefore w = 7. The only nonvanishing term in [ is Y2, = —2. This means

to

I =wYd, =—14.

As I is negative it follows that the origin is asymptotically stable.
(7i7) Hopf bifurcation theorem: Let (0,0,\) with A\ € R be a fized point of the
system

i‘l = F(:El,l‘g,)\)
iQ = G(l’l,wg,)\).

If

i) The eigenvalues e1(\) and e2(A) of the linearized system are purely imaginary
for some value A = ), i.e. e;(\) € iR and ex()\) € iR.

ii) The real part of the eigenvalues Re(e;/9())) satisfies

d
a Re(el/g()\)) ok > 0.
iii) The origin is asymptotically stable for A = A
then
a) A = \is a bifurcation point of the system.
b) For A € (A, \) with some A\; < A the origin is a stable focus.
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c) For A € (A, \g) with some Ay > X the origin is an unstable focus surrounded
by a stable limit cycle whose size increases with A. State the Hopf bifurca-
tion theorem and use it to prove that the system possesses a Hopf bifurcation

for A = 0.

The Jacobian matrix for A # 0 is

0 7

with eigenvalues ex = \/2 4+ /A% — 196.
i) for A = 0 the eigenvales are purely imaginary e; = +i7.
ii) we compute

1

d
- Re(el 2()\)) == > O
dax / i 2

iii) from part (i7) of the question we know that the origin is asymptotically
stable.

Therefore the Hopf bifurcation theorem applies.
(iv) We have

7=0 forr=0,2A and >0 forr#0,2\

Therefore
0 forr=20
f < A
La(f):{g gg;r Lo(@) ={ Coy  for 0<r <A
2 o) for r > \

Phase portrait:

b

The fixed points are at = 0 and r = 2\. With F(r, \) follows

66—]::4A3—8m2+3r2A:0 =A=0
6F_ 3 2 2 _
8)\—7“ —8rA+12rA\*=0 =r=0
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which means there is a transcritical bifurcation point at (0,0).
Bifurcation diagram:

F20 4o rdo A)>o0

; p#ff‘ff Vv ree A A=ewo
P R /
-'//'a F=la £

s | LT feo fv 30 A Neo

r
F L ST v r<osd Ao
,ﬁ/f’ﬁ Lddd
| S =20

4. (i) Def.: A system of differential equations on R? is said to be a Hamiltonian system
with one degree of freedom if there exists a twice continuously differentiable func-
tion H(x1,x2) such that

OH . OH
= 6—$2 and T = *a—wl (4)

1
(i4) Proof: We compute the Jacobian matrix for the sytem (4) as

92H 92H
Ao <azlaz2 03 )' . ( Hys  Hy )‘
- _0’H _ 9*H B _ :
0x? 0x10x2 7 Hyy —Hip Ty

The eigenvalues are then obtained from

det(A — )\H) = (H12 — )\)(*H12 - )\) + Hy1Hao =0,
such that
)\2 = —Hi1Hyo + H122.

When the fixed point is nondegenerate we only have the two possibilities

>0 = real eigenvalues of opposite sign = saddle point

)

H?, — Hy H.
12 112522 { <0 = purely complex eigenvalues = centre

which is what we wanted to prove.
(7i7) Def.: A Hamiltonian system which is of the form

1
H(x1,m9) = Ew% + V(z1),

where V(x1) is a function which only depends on x1 and not x4 is called a
potential system with potential (function) V(x1).

The corresponding equations of motion are
i—a—H—m and i——a—H——a—V
L 61‘2 - 2 6951 N &’El.
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For the system under consideration we have

V(z1) = ke *'sinxy,
V'(z1) = ke " (cosz1 — sinxy),

V"(x1) = —2Kke ™ cosx1

The stationary points from V’(z) are at

xgn):%err n € N.

Therefore

V"(x&n)) = — ke~ (GH0T) cos(% +nr) = (—1)"2ke G+
for K € RT,n even: V" (scgn)) < 0 =maximum at x§"’ =saddle point at (scgn), 0),
for k € R, n odd: V”(mgn)) > 0 =minimum at xgn) =centre at (w&n), 0),
for K € R™,n even: V”(m&n)) > 0 =minimum at xgn) =centre at (xgn), 0),
for k € R™,n odd: V”(mgn)) < 0 =maximum at xgn) =saddle point at (xgn), 0).

(tv) For a potential system we have

1
H(xy,m9) = Em% + V(z1),

Since H(x1,x2) is conserved along a trajectory, i.e. H(x1,x2) = E =const, we
can write )
E = ESL‘%‘FV(SUl) = 19 = £/2[F — V(21)]

For the period T' we have to integrate along a trajectory

T:fgdt:fgdwl/il:]idwl/m:/j\/ﬁJr/ﬁa \/h

where «, 8 are the turning point, i.e. the values for 1 when xo = 0. Therefore

T_o B dx
B /a V2[E — V()]

(v) First compute the constant E from

1 1
H(2%/4,2) = 522 + Z23 —4=F.

The turning points result from solving

1
E:ZJ::H(amg,O):Zacft1 :>x§1/2)::|:2.
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5.

(4)

Therefore
2 2
T_ 2/ dx _ 4/ dz
2 /2[4 — z*/4] 0 /2[4 —24/4]
1 2dzx U dx
-
/o 8[1 — 4] 0o V1—at
= V/8rD(5/4)T(3/4)
We can write > =20
Tpp1 = F(xn) = (25 — 3A)(Tn + 5A)
This means we have fixed points at
ac;l) =3\ and x?) = —HA.
A fixed point x¢ is stable iff |F'(z¢)| < 1. With F'(z) = 2z 4 2 follows that
scgfl) is stable for [6A + 2\| < 1, that is A < 1/8.
x?) is stable for | =10\ 4 2)A| < 1, that is A < 1/8.
A 2-cycle exists if F'(F(x)) = z. Compute

x = (F(z) —3\)(F(z) + 5\)
= F%(x) + 2\F(x) — 15)
= (x — 30)%(z + 50)? + 2\ (z — 3\)(z + 5A) — 157
= 2% 4+ 22501 — 6023 + 423\ — 262°2% + 2\(x — 3\)(z + 5A) — 150
= ot — 15X — 3003 + 2250% + 4zA? + 227\ — 6023 + 423\ — 262202
Since the fixed point is a solution of this equation, we can factor our the term
F(x) — z. Verify that:
(F(x) —z) (1 4+ 4+ 2%+ 2) + 22X — 15)?)
= o' — 15X — 3007 + 2250% + 422? + 222\ — 60203 + 42°\ — 262°)\% — x =0
This means
L4+x+a®+2X+22) - 1502 =0
for a two cycle to exist. Solving this quadratic equation gives
1 1
re=—-(A+3)*3 64X2 — 4\ —3
For this to be real we require

6402 — 4\ — 3 > 0.

Therefore the existence of a two cycle is ensured iff

1 3
(= PA+35) 20,

which means A > 1/4.
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(73i) The 2 cycle is stable of for G(x) = F(F(x))

|G'(z)| <1 & |F'(z ) F'(x2)] < 1

Compute

|2z +20) (22— +2))| = |[-64M2 +4X + 4] < 1

This means
1
—64AN2 AN+ 41 = (A=

1
—GANTH AN+ AT = (A )(

3
)\+1—6

5
ST

)
)

1

<0 :A<Z
5
>0 :>>\>1—6

The domain of stability for the 2 cycle is empty. The two cycle is always unstable.

— 10 —

> =20




