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MA3608 Dynamical Systems II

Solutions and marking scheme for exam January 2009

������������: Full marks are obtained for correct answers to three of the five questions.

Each question carries 20 marks.

1. We have

ẋ1 = x1x
2
2 − 9x1 − 16x32

ẋ2 = 4x1x
2
2 + 2x2x

2
1

(i) Lyapunov stability theorem: Consider the system �̇x = �X(�x) with a fixed

point at the origin. If there exists a real valued function V (�x) in a neighbourhood

N(�x = 0) such that:

a) the partial derivatives ∂V/∂x1, ∂V/∂x2 exist and are continuous

b) the function V (�x) is positive definite

c) dV/dt is negative semi-definite (definite)

then the origin is a stable (asymptotically stable) fixed point. 3

Def.: A function V for which the conditions i)-iii) hold with iii) semi-definite

is called weak Lyapunov function.

Def.: A function V for which the conditions i)-iii) hold with iii) definite is

called strong Lyapunov function. 1

Verify the requirements a)-c) for V (x1, x2) = 4x
2
1 + 16x

2
2

a) Clearly the partial derivatives ∂V/∂x1, ∂V/∂x2 exist and are continuous.

b) ∵ V (0, 0) = 0 and V (x1, x2) > 0 for (x1, x2) �= 0
⇒ the function V (x1, x2) = 4x

2
1 + 16x

2
2 is positive definite

c) Compute dV/dt: 6

V̇ =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= 8x1(x1x
2
2 − 9x1 − 16x32) + 32x2(4x1x22 + 2x2x21)

= 8x21x
2
2 − 72x21−128x1x32 + 128x1x32 + 64x22x21

= −8x21[9− x22(1 + 8)]
= −72x21(1− x22)
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⇒ V̇ = 0 for (0, x2)

⇒ V̇ ≤ 0 for |x2| < 1
⇒ is negative semi-definite

⇒ V is a weak Lyapunov function

⇒ by the Lyapunov stability theorem follows that the origin is a stable fixed

point. 3

(ii) For |x2| < 1 all points inside the level curve of V (x1, x2) = 4x
2
1 + 16x

2
2 will be

dragged to the origin.

⇒ 4x21 + 16x
2
2 < 16 ⇒ x21

4
+ x22 < 1

⇒ the length of the minor is 2 and the length of the major is 4. 4

(iii) Corollary: Let V (�x(t)) be a weak Lyapunov function for the system �̇x = �X(�x)

in a neighbourhood of an isolated fixed point �xf = (0, 0). Then if V̇ �= 0 on a
trajectory, except for the fixed point, the origin is asymptotically stable.

For (0, x2) the dynamical system reduces to ẋ1 = −16x32 and ẋ2 = 0. 3

This means the line (0, x2) is not a trajectory and therefore it follows from the

corollary that the origin is asymptotically stable.
∑
= 20

2. We have

ẋ1 = x1 − x2 − x31
ẋ2 = x1 + x2 − x32

(i) With x1 = r cosϑ and x2 = r sinϑ we obtain

ẋ1 = ṙ cosϑ− r sinϑϑ̇ = r cosϑ− r sinϑ− r3 cos3 ϑ (1)

ẋ2 = ṙ sinϑ+ r cosϑϑ̇ = r sinϑ+ r cosϑ− r3 sin3 ϑ (2)

computing: (1) × cosϑ + (2) × sinϑ:

ṙ = r cos2 ϑ+ r sin2 ϑ− r3(cos4 ϑ+ sin4 ϑ)

= r

[
1− r

2

4
(3 + cos 4ϑ)

]

computing: (1) × sinϑ - (2) × cosϑ:

rϑ̇ = r − r3 sin3 ϑ cosϑ+ r3 cos3 ϑ sinϑ

dividing by r: 4

ϑ̇ = 1− r2 sinϑ cosϑ(sin2 ϑ− cos2 ϑ)

= 1− r
2

2
sin 2ϑ cos 2ϑ

= 1− r
2

4
sin 4ϑ

— 2 —
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For a further fixed point to exist we need to solve

1− r
2

4
(3 + cos 4ϑ) = 0 and 1− r

2

4
sin 4ϑ = 0

Substiting r2 = −4/ sin 4ϑ into the first equation yields

3 + cos 4ϑ+ sin 4ϑ = 0,

which has no solution. Therefore we have no further fixed point. 2

(ii) Poincaré-Bendixson theorem: Let ϕt be a flow for the system �̇x = �X(�x)

and let D be a closed, bounded and connected set D ∈ R2, such that ϕt(D) ⊂ D
for all time. Furthermore D does not contain any fixed point. Then there exists

at least one limit cycle in D. 3

for r = 1/3 we compute:

ṙ =
1

3

[
1− 1

36
(3 + cos 4ϑ)

]
> 0

for r = 2 we compute:

ṙ = 2 [1− (3 + cos 4ϑ)] < 0

⇒ trajectories which enter the region

D =
{
(r, ϑ) :

1

3
≤ r ≤ 2

}

do not leave it anymore.

⇒ Since there is no fixed point in D, see (i), we can employ the Poincaré-

Bendixson theorem to deduce that there is at least one limit cycle in D. 3

(iii) Bendixson’s criterium: Let D be a simply connected region of the phase plane
in which the function �X(�x) of the system �̇x = �X(�x) has the property that its

divergence is of constant sign, i.e.

div �X =
∂X1
∂x1

+
∂X2
∂x2

< 0 or div �X =
∂X1
∂x1

+
∂X2
∂x2

> 0.

Then the system has no closed orbit contained entirely in D.
2

We also have the theorem: A limit cycle contains at least one fixed point. 1
For the system

ẋ1 = x
2
1 − x2 − 1

ẋ2 = x1x2 − 2x2

we compute

div �X =
∂X1
∂x1

+
∂X2
∂x2

= 3x1 − 2 =






< 0 for x1 < 2/3

= 0 for x1 = 2/3

> 0 for x1 > 2/3

— 3 —
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This means if a limit cycle exists it has to cross the line x1 = 2/3.

Find the fixed points from

x21 − x2 − 1 = 0 and x1x2 − 2x2 = 0.

This yields

�x
(1)
f = (−1, 0), �x

(2)
f = (1, 0), �x

(3)
f = (2, 3).

We also have

ẋ1 = −5
9
− x2, ẋ2 =

2

3
x2 − 2x2 for x1 = 2/3,

ẋ1 = x
2
1 − 1, ẋ2 = 0 for x2 = 0.

This means we can never encircle a fixed point and cross the x1 = 2/3 at the 5

same time. We assemble these data into the following figure

∑
= 20

3. (i) In one dimension Bifurcation theory investigates how the number of steady solu-

tions of the system ẋ = F (x, λ) depend on the parameter λ. A bifurcation occurs

if the solution of ẋ = F (x, λ) changes its qualitative behaviour as λ varies.

Def.: Let (x0, λ0) be a fixed point for the system ẋ = F (x, λ). If ∂F/∂λ|(x
0
,λ0) �=

0 and ∂λ/∂x changes sign at (x0, λ0), then (x0, λ0) is called a turning point.

Def.: Let (x0, λ0) be a fixed point for the system ẋ = F (x, λ). If ∂F/∂λ|(x
0
,λ0) =

0 and ∂F/∂x|(x
0
,λ0) = 0 and if through (x0, λ0) pass two and only two braches of

the equilibrium curve which have both distinct tangents at (x0, λ0), then (x0, λ0)

is called a transcritical bifurcation.

Def.: Let (x0, λ0) be a fixed point for the system ẋ = F (x, λ).If ∂F/∂λ|(x
0
,λ0) =

0 and ∂F/∂x|(x
0
,λ0) = 0 and dλ/dx changes sign on one branch of the equilib-

rium curve with distinct tangents, then (x0, λ0) is called a pitchfork bifurcation. 4

— 4 —
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(ii) We have the following corollary: Suppose that for the system �̇x = �X(�x)we

have transformed the linearized system �̇x = A�x with the help of �x = U�y into the

Jordan normal form

�̇y = U−1AU�y = J�y =

(
0 ω

−ω 0

)

, (3)

where �x = U�y, �̇y = �Y (�y). Then if the stability index

I = ω
(
Y 1111 + Y

1
122 + Y

2
112 + Y

2
222

)
+Y 111(Y

2
11−Y 112)+Y 222(Y 212−Y 122)+Y 211Y 212−Y 122Y 112

computed from is negative, the origin is asymptotically stable.

We compute the Jacobian for the system

ẋ1 = 7x2 ẋ2 = −(x21 − λ)x2 − 7x1 − 2x31

to

A =

(
0 7

−7 0

)

.

Note this is already in Jordan normal form, such that A = J and �X = �Y .

Therefore ω = 7. The only nonvanishing term in I is Y 2112 = −2. This means

I = ωY 2112 = −14.

As I is negative it follows that the origin is asymptotically stable. 3

(iii) Hopf bifurcation theorem: Let (0,0,λ) with λ ∈ R be a fixed point of the

system

ẋ1 = F (x1, x2, λ)

ẋ2 = G(x1, x2, λ).

If

i) The eigenvalues e1(λ) and e2(λ) of the linearized system are purely imaginary

for some value λ = λ̃, i.e. e1(λ) ∈ iR and e2(λ) ∈ iR.
ii) The real part of the eigenvalues Re(e1/2(λ)) satisfies

d

dλ
Re(e1/2(λ))

∣∣∣∣
λ=λ̃

> 0.

iii) The origin is asymptotically stable for λ = λ̃.

then

a) λ = λ̃ is a bifurcation point of the system.

b) For λ ∈ (λ1, λ̃) with some λ1 < λ̃ the origin is a stable focus.

— 5 —
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c) For λ ∈ (λ̃, λ2) with some λ2 > λ̃ the origin is an unstable focus surrounded

by a stable limit cycle whose size increases with λ. State the Hopf bifurca-

tion theorem and use it to prove that the system possesses a Hopf bifurcation

for λ = 0. 3

The Jacobian matrix for λ �= 0 is

A =

(
0 7

−7 λ

)

,

with eigenvalues e± = λ/2±
√
λ2 − 196.

i) for λ = 0 the eigenvales are purely imaginary e± = ±i7.
ii) we compute

d

dλ
Re(e1/2(λ))

∣∣∣∣
λ=λ̃=0

=
1

2
> 0.

iii) from part (ii) of the question we know that the origin is asymptotically

stable.

Therefore the Hopf bifurcation theorem applies. 2

(iv) We have

ṙ = 0 for r = 0, 2λ and ṙ > 0 for r �= 0, 2λ

Therefore

Lα(�x) =

{
0 for 0 ≤ r < λ
C2λ for r �= λ Lω(�x) =






0 for r = 0

C2λ for 0 < r ≤ λ
∅ for r > λ

Phase portrait:

4

The fixed points are at r = 0 and r = 2λ. With F (r, λ) follows

∂F

∂r
= 4λ3 − 8rλ2 + 3r2λ = 0 ⇒ λ = 0

∂F

∂λ
= r3 − 8r2λ+ 12rλ2 = 0 ⇒ r = 0

— 6 —
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which means there is a transcritical bifurcation point at (0, 0).

Bifurcation diagram: 4

∑
= 20

4. (i) Def.: A system of differential equations on R2 is said to be a Hamiltonian system

with one degree of freedom if there exists a twice continuously differentiable func-

tion H(x1, x2) such that 1

ẋ1 =
∂H

∂x2
and ẋ2 = −

∂H

∂x1
. (4)

(ii) Proof: We compute the Jacobian matrix for the sytem (4) as

A =

(
∂2H
∂x1∂x2

∂2H
∂x2

2

−∂2H
∂x2

1

− ∂2H
∂x1∂x2

)∣∣∣∣∣
�xf

=:

(
H12 H22
−H11 −H12

)∣∣∣∣∣
�xf

.

The eigenvalues are then obtained from

det(A− λI) = (H12 − λ)(−H12 − λ) +H11H22 = 0,

such that

λ2 = −H11H22 +H2
12.

When the fixed point is nondegenerate we only have the two possibilities

H2
12 −H11H22

{
> 0 ≡ real eigenvalues of opposite sign ≡ saddle point

< 0 ≡ purely complex eigenvalues ≡ centre
,

which is what we wanted to prove. 4

(iii) Def.: A Hamiltonian system which is of the form

H(x1, x2) =
1

2
x22 + V (x1),

where V (x1) is a function which only depends on x1 and not x2 is called a

potential system with potential (function) V (x1).

The corresponding equations of motion are 1

ẋ1 =
∂H

∂x2
= x2 and ẋ2 = −

∂H

∂x1
= − ∂V

∂x1
.

— 7 —
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For the system under consideration we have

V (x1) = κe
−x1 sinx1,

V ′(x1) = κe
−x1(cosx1 − sinx1),

V ′′(x1) = −2κe−x1 cosx1

The stationary points from V ′(x1) are at

x
(n)
1 =

π

4
+ nπ n ∈ N.

Therefore 4

V ′′(x
(n)
1 ) = −2κe−(π4+nπ) cos(π

4
+ nπ) = (−1)n+1

√
2κe−(

π
4
+nπ)

for κ ∈ R+, n even: V ′′(x(n)1 ) < 0⇒maximum at x
(n)
1 ⇒saddle point at (x

(n)
1 , 0),

for κ ∈ R+, n odd: V ′′(x
(n)
1 ) > 0⇒minimum at x

(n)
1 ⇒centre at (x

(n)
1 , 0),

for κ ∈ R−, n even: V ′′(x
(n)
1 ) > 0⇒minimum at x

(n)
1 ⇒centre at (x

(n)
1 , 0),

for κ ∈ R−, n odd: V ′′(x
(n)
1 ) < 0⇒maximum at x

(n)
1 ⇒saddle point at (x

(n)
1 , 0). 2

(iv) For a potential system we have

H(x1, x2) =
1

2
x22 + V (x1),

Since H(x1, x2) is conserved along a trajectory, i.e. H(x1, x2) = E =const, we

can write

E =
1

2
x22 + V (x1) ⇒ x2 = ±

√
2[E − V (x1)]

For the period T we have to integrate along a trajectory

T =

∮

C
dt =

∮

C
dx1/ẋ1 =

∮

C
dx1/x2 =

∫ β

α

dx
√
2[E − V (x)]

+

∫ α

β

dx

−
√
2[E − V (x)]

where α, β are the turning point, i.e. the values for x1 when x2 = 0. Therefore

T = 2

∫ β

α

dx
√
2[E − V (x)]

4

(v) First compute the constant E from

H(23/4, 2) =
1

2
22 +

1

4
23 = 4 = E.

The turning points result from solving

E = 4 = H(xt, 0) =
1

4
x4t ⇒ x

(1/2)
t = ±2.

— 8 —
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Therefore

T = 2

∫ 2

−2

dx
√
2[4− x4/4]

= 4

∫ 2

0

dx
√
2[4− x4/4]

= 4

∫ 1

0

2dx
√
8[1− x4]

=
√
8

∫ 1

0

dx√
1− x4

=
√
8πΓ(5/4)Γ(3/4)

4
∑
= 205. (i) We can write

xn+1 = F (xn) = (xn − 3λ)(xn + 5λ)
This means we have fixed points at 1

x
(1)
f = 3λ and x

(2)
f = −5λ.

A fixed point xf is stable iff |F ′(xf )| < 1. With F ′(x) = 2x+ 2λ follows that

x
(1)
f is stable for |6λ+ 2λ| < 1, that is λ < 1/8.
x
(2)
f is stable for |−10λ+ 2λ| < 1, that is λ < 1/8. 3

(ii) A 2-cycle exists if F (F (x)) = x. Compute 1

x = (F (x)− 3λ)(F (x) + 5λ)
= F 2(x) + 2λF (x)− 15λ
= (x− 3λ)2(x+ 5λ)2 + 2λ(x− 3λ)(x+ 5λ)− 15λ
= x4 + 225λ4 − 60xλ3 + 4x3λ− 26x2λ2 + 2λ(x− 3λ)(x+ 5λ)− 15λ
= x4 − 15λ− 30λ3 + 225λ4 + 4xλ2 + 2x2λ− 60xλ3 + 4x3λ− 26x2λ2

Since the fixed point is a solution of this equation, we can factor our the term 5

F (x)− x. Verify that: 4

(F (x)− x) (1 + x+ x2 + 2λ+ 2xλ− 15λ2)
= x4 − 15λ− 30λ3 + 225λ4 + 4xλ2 + 2x2λ− 60xλ3 + 4x3λ− 26x2λ2 − x = 0

This means

1 + x+ x2 + 2λ+ 2xλ− 15λ2 = 0
for a two cycle to exist. Solving this quadratic equation gives

x± = −(λ+
1

2
)± 1

2

√
64λ2 − 4λ− 3

For this to be real we require

64λ2 − 4λ− 3 ≥ 0.

Therefore the existence of a two cycle is ensured iff

(λ− 1
4
)(λ+

3

16
) ≥ 0,

which means λ ≥ 1/4. 3

— 9 —
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(iii) The 2 cycle is stable of for G(x) = F (F (x))

∣∣G′(x)
∣∣ < 1 ⇔

∣∣F ′(x+)F ′(x−)
∣∣ < 1

Compute

|(2x+ + 2λ)(2x− + 2λ)| =
∣∣−64λ2 + 4λ+ 4

∣∣ < 1

This means

−64λ2 + 4λ+ 4− 1 = (λ− 1
4
)(λ+

3

16
) < 0 ⇒ λ <

1

4

−64λ2 + 4λ+ 4+ 1 = (λ+
1

4
)(λ− 5

16
) > 0 ⇒ λ >

5

16

The domain of stability for the 2 cycle is empty. The two cycle is always unstable. 3
∑
= 20

— 10 —


