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MA3608 Dynamical Systems II

Solutions and marking scheme for exam January 2010

������������: Full marks are obtained for correct answers to three of the five questions.

Each question carries 20 marks.

(All questions are unseen, apart from definitions and theorems which are seen.)

1. (i) Defining 2

x1 = x and x2 = ẋ,

we obtain

ẋ1 = ẋ = x2,

ẋ2 = ẍ = −x2 − µx31 − νx52.

(ii) The fixed point �xf = (0, 0) results from 1

x2 = 0,

−x2 − µx31 − νx52 = 0.

Linearization theorem: Consider a nonlinear system which possesses a simple 2

linearization at some fixed point. Then in a neighbourhood of the fixed point

the phase portraits of the linear system and its linearization are qualitatively

equivalent, if the eigenvalues of the Jacobian matrix have a nonzero real part,

i.e. the linearized system is not a centre.

We compute the Jacobian for the above system at the fixed point:

A(�xf ) =

�
0 1

0 −1

�

⇒ detA(�xf ) = 0⇒ non-simple linearization

The linearization theorem can not be applied since the system is non-simple.

(iii) Lyapunov stability theorem: Consider the system �̇x = �F (�x) with a fixed 3

point at the origin. If there exists a real valued function V (�x) in a neighbourhood

N(�x = 0) such that:

i) the partial derivatives ∂V/∂x1, ∂V/∂x2 exist and are continuous,

ii) the function V (�x) is positive definite,
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iii) dV/dt is negative semi-definite (definite),

then the origin is a stable (asymptotically stable) fixed point.

Verify conditions: 5

i) the partial derivatives ∂V/∂x1 = 4αx
3
1, ∂V/∂x2 = 4x2 exist and are continu-

ous,

ii) the function V (�x) is positive definite, i.e. V (�0) = 0 and V (�x) > 0∀�x �= �0,

iii) dV/dt should be negative semi-definite for V (�x) to be a weak Lyapunov

function:

dV

dt
=

∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= 4αx31x2 + 4x2(−x2 − µx31 − νx52)

= (4α− 4µ)x31x2 − 4x22 − 4νx62

⇒ dV/dt should be negative semi-definite for α = µ and ν ≥ 0.
(iv) The partial derivatives ∂V1/∂x1 and ∂V1/∂x2 exist and are continuous. V1(�x) 3

is positive definite. But

dV

dt
=

∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= 2x1x2 + 2x2(−x2 − x31)

does not lead to a negative semi-definite function. Therefore V1 is not a Lya-

punov function.

V2(�x) is not positive definite. Therefore V2 is not a Lyapunov function.

(v) Corollary: Let V [�x(t)] be a weak Lyapunov function for the system �̇x = �F (�x) 4

in a neighbourhood of the isolated fixed point �xf = (0, 0). Then if V̇ �= 0 on any

trajectory, except for the fixed point, the origin is asymptotically stable.

- We have dV/dt = 0 for �x = (x1, 0).

- On this line we have ẋ1 = 0 and ẋ2 = −µx31, which means the line �x = (x1, 0)
is not a trajectory.

- Therefore �x = (0, 0) is asymptotically stable.
�
= 20

2. We have

ẋ1 = x2 + x1(x
2
1 + x22 − 5)(1− x41 − x42 − 2x21x22)

ẋ2 = −x1 + x2(x
2
1 + x22 − 5)(1− x41 − x42 − 2x21x22)

(i) With x1 = r cosϑ and x2 = r sinϑ we obtain 4

ẋ1 = ṙ cosϑ− r sinϑϑ̇ = r sinϑ+ r cosϑ(r2 − 5)(1− r4) (1)

ẋ2 = ṙ sinϑ+ r cosϑϑ̇ = −r cosϑ+ r sinϑ(r2 − 5)(1− r4) (2)

— 2 —
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where x21 + x22 = r2. Computing (1) × cosϑ + (2) × sinϑ gives

ṙ = r(r2 − 5)(1− r4). (3)

Next we compute (1) × sinϑ - (2) × cosϑ:

−rϑ̇ = r

Dividing by r gives

ϑ̇ = −1. (4)

Since ϑ̇ �= 0 the origin is the only fixed point. 1

(ii) Poincaré-Bendixson theorem: Let ϕt be a flow for the system �̇x = �F (�x) 2

and let D be a closed, bounded and connected set D ∈ R2, such that ϕt(D) ⊂ D
for all time. Furthermore D does not contain any fixed point. Then there exists

at least one limit cycle in D.

For r = 2 we compute 3

ṙ(2) = 2(4− 5)(1− 16) = 30 > 0,

and for r = 3 we compute

ṙ(3) = 2(9− 5)(1− 81) = −960 < 0.

⇒ trajectories which enter the region

D = {(r, ϑ) : 2 ≤ r ≤ 3}

can never leave it.

⇒ Since there is no fixed point in D, see (i), we can employ the Poincaré-
Bendixson theorem to deduce that there is at least one limit cycle in D.

(iii) Equations (3) and (4) give the diagram: 2

— 3 —
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(iv) Def.: The ω-limit set (or positive limit set) Lω(�x) of a point �x contains those 1

points which are approached by the trajectory through �x as t→∞, that is

Lω(�x) = {�y ∈ Rn : ∃ a sequence of times tn with tn →∞,
such that lim

n→∞
ϕtn(�x) = �y

�

Def.: The α-limit set (or negative limit set) Lα(�x) of a point �x contains those

points which are approached by the trajectory through �x as t→−∞, that is

Lα(�x) = {�y ∈ Rn : ∃ a sequence of times tn with tn → −∞,
such that lim

n→∞
ϕtn(�x) = �y

�

Accordingly we compute for (3) and (4) 3

Lα(�x) =






0 for r = 0

C1 for 0 < r <
√
5

C√5 for r =
√
5

∅
√
5 < r

Lω(�x) =






0 for 0 < r < 1

C1 for r = 1

C√5 for 1 < r

Def.: A closed orbit φ is a limit cycle if φ is a subset of an α or ω-limit set 2

for some point �x /∈ φ.

We have ṙ = 0 for r = 0,
√
5, 1, which means we have a limit cycle with radius

r = 1 : C1 and one with radius r =
√
5 : C√5.

Def.: A limit cycle φ is a called a stable (unstable) limit cycle, if φ = Lω(�x)

(φ = Lα(�x)) for all �x in some neighbourhood of the limit cycle.

Def.: A limit cycle φ is a called a semi-stable limit cycle, if it is a stable limit

cycle for points on one side and an unstable limit cycle for point on the other

side.

Therefore C1 is unstable and C√5 is stable. The limit cycle C√5 is the one

identified in (ii) since C√5 ⊂ D.
(v) Bendixson’s criterium: Let D be a simply connected region of the phase 2

plane in which the function �F (�x) of the system �̇x = �F (�x) has the property that

its divergence is of constant sign, i.e.

div �F =
∂F1
∂x1

+
∂F2
∂x2

< 0 or div �F =
∂F1
∂x1

+
∂F2
∂x2

> 0.

Then the system posesses no closed orbit contained entirely in D.

D̂ is not a simply connected region and therefore we can not apply Bendixson’s
criterium to decide whether it contains limit cycles or not.

�
= 20

3. (i) Bifurcation theory investigates how the number of steady solutions of systems 2

of the type ẋ = F (x, λ) depend on the parameter λ. A bifurcation occurs if

the solution of ẋ = F (x, λ) changes its qualitative behaviour as the parameter

— 4 —
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λ varies. Considering F (x, λ) = 0 leads to a plot in the (x, λ)-plane called the

bifurcation diagram.

The fixed points are found from 2

F (x, λ) = x3 + γx2 − λx = 0.

i.e. they are at the three curves

x1 = 0 x2/3 =
1

2

	
−γ ±



γ2 + 4λ

�
.

In order to characterize the types of bifurcations we need

∂F (x, λ)

∂x
= 3x2 + 2γx− λ and

∂F (x, λ)

∂λ
= −x.

• A point (x0, λ0) on the equilibrium curve for the system ẋ = F (x, λ) is 2

called a pitchfork bifurcation if ∂F/∂λ|(x
0
,λ0) = 0, ∂F/∂x|(x

0
,λ0) = 0 and

dλ/dx changes sign on one branch of the equilibrium curve with distinct

tangents, where λ(x) is the solution of the equation F (x, λ) = 0.

∂F/∂λ|(x
0
,λ0) = 0 gives x0 = 0 and subsequently ∂F/∂x|(x

0
,λ0) = 0 gives

λ0 = 0. Since dλ/dx = 2x changes sign at x0 = 0 and this branch has

a different tangent than x1 = 0, the point (x0, λ0) = (0, 0) constitutes a

pitchfork bifurcation.

• A point (x0, λ0) on the equilibrium curve for the system ẋ = F (x, λ) is 2

called a transcritical bifurcation if ∂F/∂λ|(x
0
,λ0) = 0, ∂F/∂x|(x

0
,λ0) = 0

and in addition two and only two branches of the equilibrium curve pass

through this point which have both distinct tangents at (x0, λ0).

For γ �= 0 we have dλ/dx = 2x+γ, which no longer changes sign at x0 = 0.

However, only two branches pass through this point and their tangents are

distinct, such that (x0, λ0) = (0, 0) constitutes a transcritical bifurcation.

• A point (x0, λ0) on the equilibrium curve for the system ẋ = F (x, λ) is 4

called a turning point if ∂F/∂λ|(x
0
,λ0) �= 0 and ∂λ/∂x changes sign at this

point.

From
∂x2
∂λ

=
1



γ2 + 4γ

and
∂x3
∂λ

= − 1


γ2 + 4γ

.

follows that ∂x/∂λ changes sign for λ0 = −γ2/4, such that x2(λ0) =
x3(λ0) = x0 = −γ/2. Since ∂F/∂λ|(x

0
,λ0) = γ/2 �= 0 this mean

(x0, λ0) = (−γ/2,−γ2/4)

is a turning point for the above system.

(ii) We make use of the follwoing corollary: Suppose that for the system �̇x = �F (�x),we 4

have transformed the linearized system �̇x = A�x,with the help of �x = U�y into the

Jordan normal form

�̇y = U−1AU�y = J�y =

�
0 ω

−ω 0

�

, (5)

— 5 —
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with ω ∈ R+. Then the origin is asymptotically stable if the stability index I,

computed from the transformed system �̇y = �Y (�y), is negative.

Thus we compute the Jacobian matrix for the system

ẋ1 = 9x2 + 3x
2
1

ẋ2 = λx2 − 2x21x2 − 9x1 − 2x31 + αx21

to

A(�xf ) =

�
0 9

−9 λ

�

We note that for λ = 0 this is already in Jordan normal form, such that A = J

and �X = �Y . Therefore ω = 9. The only nonvanishing terms in I are

Y 2112 = −4, Y 211 = 2α and Y 111 = 6.

Therefore

I = ωY 2112 + Y 211Y
1
11 = 9(−4) + 12α = 12α− 36.

This means I is negative for α < 3, i.e. the origin is asymptotically stable for

α < 3.

(iii) Hopf bifurcation theorem: Let the point (0,0,λ), with λ ∈ R, be a fixed point 4

for the system

ẋ1 = F1(x1, x2, λ), (6)

ẋ2 = F2(x1, x2, λ), (7)

for all values of λ. If for a particular value of λ, say λ = λ̃,

i) the eigenvalues e1(λ) and e2(λ) of the linearized system are purely imaginary,

i.e. e1(λ̃) ∈ iR and e2(λ̃) ∈ iR,

ii) the real part of the eigenvalues Re(e1(λ)) = Re(e2(λ)) satisfies

d

dλ
Re(e1/2(λ))

����
λ=λ̃

> 0, (8)

iii) the origin is asymptotically stable for λ = λ̃,

then the following statements hold:

a) The point with λ = λ̃ is a bifurcation point of the system.

b) For λ ∈ (λ1, λ̃) with some λ1 < λ̃ the origin is a stable focus.

c) For λ ∈ (λ̃, λ2) with some λ2 > λ̃ the origin is an unstable focus surrounded

by a stable limit cycle whose size increases with λ.

The eigenvalues for the Jacobian matrix with λ �= 0 are computed to

e± =
1

2

	
λ±



λ2 − 324

�
.

— 6 —
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i) for λ = 0 the eigenvales are purely imaginary: e± = ±i9.
ii) we compute

d

dλ
Re(e1/2(λ))

����
λ=λ̃=0

=
1

2
> 0.

iii) from part (ii) of the question we know that the origin is asymptotically

stable for α = 2.

Therefore the Hopf bifurcation theorem applies for α = 2. The situation is

inconclusive for α = 4.
�
= 20

4. (i) Def.: A system of differential equations on R2 is said to be a Hamiltonian system 2

with one degree of freedom if there exists a twice continuously differentiable func-

tion H(x1, x2) such that

ẋ1 =
∂H

∂x2
and ẋ2 = −

∂H

∂x1
. (9)

The equations (9) are said to be the equations of motions correponding to the

Hamiltonian H. When H does not depend explicitly on the time t, i.e. it

is of the form H(x1(t), x2(t)) and not H(x1(t), x2(t), t), the system is called

autonomous.

(ii) A dynamical system 2

ẋ1 = F1(x1, x2) and ẋ2 = F2(x1, x2),

is a Hamiltonian system if and only if

div �F =
∂F1
∂x1

+
∂F2
∂x2

= 0.

We compute

div �F =
∂F1
∂x1

+
∂F2
∂x2

= 3µx21x
2
2 + 2− 6x21x22 − 2 = 0.

Therefore the system is a Hamiltonian system when µ = 2.

(iii) Def.: A Hamiltonian system which is of the form 5

H(x1, x2) =
1

2
x22 + V (x1),

where V (x1) is a function which only depends on x1 and not x2 is called a

potential system with potential (function) V (x1).

From the definition in (i) follows

ẋ1 =
∂H

∂x2
= x2 ⇒ H(x1, x2) =

1

2
x22 + f(x1)

ẋ2 = −∂H

∂x1
= −2x1 +

20x1
1 + x21

⇒ H(x1, x2) = x21 − 10 ln(1 + x2) + f(x2).

— 7 —
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Therefore

H(x1, x2) =
1

2
x22 + x21 − 10 ln(1 + x21) + c,

such that the potential is

V (x1) = x21 − 10 ln(1 + x21) + c.

From V (0) = 0 follows c = 0.

(iv) The fixed points for the Hamiltonian system described by 5

H(x1, x2) =
1

2
x22 + V (x1) (10)

are located at the points (ak, 0) with k = 1, 2, 3, . . ., where the ak are stationary

points of the potential V (x1). If V (ak) is a minimum then the point (ak, 0) is

a centre and if on the other hand V (ak) is a maximum the point (ak, 0) is a

saddle point.

We compute the stationary points from

V ′(x1) = 2x1 −
20x1
1 + x21

=
2x1(x

2
1 − 9)

1 + x21
= 0 for x1 = 0,±3.

Furthermore

V ′′(x1) = 2− 10


− 4x21
(1 + x21)

2
+

2

1 + x21

�

and therefore

V ′′(0) = −18⇒ x1 = 0 is a minimum of V (x1)⇒ (0, 0) is a saddle point,

V ′′(±3) = 18

5
⇒ x1 = ±3 are maxima of V (x1)⇒ (±3, 0) are centres.

(v) The separatrix crosses the saddle point, i.e. H(0, 0) = 0 is conserved on the 6

separatrix. The equation for the separatrix is therefore

0 =
1

2
x22 + x21 − 10 ln(1 + x21)⇒ x2 = ±

�
2x21 − 20 ln(1 + x21).

The direction of time follows from ẋ1 > 0 for x2 > 0 and ẋ1 < 0 for x2 < 0.

All trajectories are bounded.

We assemble all the information in the diagram:

— 8 —
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�
= 20

5. (i) The fixed points are found from 1

F (x) = x ⇔ 8λx− 4λx2 = x

This means we have fixed points at 3

x
(1)
f = 0 and x

(2)
f = 2− 1

4λ
.

A fixed point xf is stable iff |F ′(xf )| < 1. With F ′(x) = 8λ− 8λx follows that
x
(1)
f is stable for |8λ| < 1, that is λ < 1/8.
x
(2)
f is stable for |2− 8λ| < 1, that is 1/8 < λ < 3/8.

(ii) A 2-cycle exists if F (F (x)) = x. Compute 6

x = 8λF (x)− 4λF 2(x)
= 8λ(8λx− 4λx2)− 4λ(8λx− 4λx2)2

= 64λ2x− 64λ3x4 + 256λ3x3 − 256λ3x2 − 32λ2x2

= 32(2λ2x− 2λ3x4 + 8λ3x3 − 8λ3x2 − λ2x2)

— 9 —
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Since the fixed point is a solution of this equation, we can factor out the term

F (x)−x. Not knowing the answer the can be done by polynomial devision, but
in this case it is sufficient to verify that: 4

(F (x)− x) (1 + 8λ− 4xλ− 32xλ2 + 16x2λ2)
= 32(2λ2x− 2λ3x4 + 8λ3x3 − 8λ3x2 − λ2x2)− x = 0

This means we require 3

1 + 8λ− 4xλ− 32xλ2 + 16x2λ2 = 0

for a two cycle to exist. Solving this quadratic equation gives

x± = 1 +
1

8λ
± 1

8λ



64λ2 − 16λ− 3

For this to be real we require

64λ2 − 16λ− 3 ≥ 0.

Therefore the existence of a two cycle is ensured iff

(8λ+ 1)(8λ− 1) ≥ 0,

which means λ ≥ 3/8.
(iii) The 2 cycle is stable for G(x) = F (F (x)) 3

��G′(x)
�� < 1 ⇔

��F ′(x+)F ′(x−)
�� < 1

Compute therefore

|(8λ− 8λx+)(8λ− 8λx−)| =
��4 + 16λ− 64λ2

�� < 1

This means the two cycle is stable in the regime

3

8
< λ <

1

8
(1 +

√
6)

and unstable for λ > (1 +
√
6)/8

�
= 20
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