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MA3608 Dynamical Systems II

Solutions and marking scheme for exam January 2011

������������: Full marks are obtained for correct answers to three of the five questions.

Each question carries 20 marks.

(All questions are unseen, apart from definitions and theorems which are seen.)

1. (i) Definition: In case the map �F in �̇x = �F (�x) is linear in x1, x2, . . . , xn the

dynamical system is called a linear dynamical system. 2

This means the system acquires the simpler form

�̇x = �F (�x) = A�x (1)

with A being an n × n-matrix with constant entries, i.e. Aij =const for 1 ≤
i, j ≤ n.

Definition: A linear system is called simple, if A is non-singular, i.e. detA �=
0 and A has non-zero eigenvalues. 1

(ii) Taking the matrix A to be in the most general form with arbitrary constants 7

entries a, b, c, d ∈ R, equation (1) for the fixed point becomes

�F (�xf ) = A�xf =

�
a b

c d

��
x1
x2

�

= 0. (2)

From this follows

ax1 + bx2 = 0⇔ x1 = −b/ax2
cx1 + dx2 = 0⇔ x1 = −d/cx2

�

⇒ (detA)x2 = 0 (3)

Since the determinant of A is non-vanishing we conclude from the last equality

in (3) that x2 = 0. A similar argument leads to x1 = 0. As there are no further

solutions to (2), the only fixed point of this linear system is the origin �.

(iii) First we need to show that J is of diagonal form. From the eigenvalue equation 10

A�v± = λ±�v± with λ+ �= λ− (4)

we construct a matrix U which consists of the eigenvectors of A as column

vectors

U = (�v+, �v−). (5)
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Then we compute

AU = (A�v+, A�v−) = (λ+�v+, λ−�v−) = UJ. (6)

Since λ+ �= λ− the two eigenvalues �v+ and �v− are linearly independent, such

that the matrix U is nonsingular, i.e. detU �= 0. Therefore the inverse U−1

exists, such that

J = U−1AU =

�
λ+ 0

0 λ−

�

. (7)

Next we consider the dynamical system produced by the matrix J

�
ẏ+
ẏ−

�

=

�
λ+ 0

0 λ−

��
y+
y−

�

, (8)

which is evidently solved by

y± = k±e
λ±t, (9)

such that

y− = k−(y+/k+)
λ+/λ− . (10)

Clearly if λ+ > λ− > 0 we obtain from this the phase portrait of an unstable

node and when λ− < λ+ < 0 we obtain the phase portrait for a stable node.
�
= 20

2. We have

ẋ1 = x2 + x1(2− x61 − x62 − 3x41x22 − 3x21x42)(x21 + x22 − 6)
ẋ2 = −x1 + x2(2− x61 − x62 − 3x41x22 − 3x21x42)(x21 + x22 − 6)

(i) With x1 = r cosϑ and x2 = r sinϑ we obtain 4

ẋ1 = ṙ cosϑ− r sinϑϑ̇ = r sinϑ+ r cosϑ(2− r6)(r2 − 6) (11)

ẋ2 = ṙ sinϑ+ r cosϑϑ̇ = −r cosϑ+ r sinϑ(2− r6)(r2 − 6) (12)

where x21 + x22 = r2. Computing (11) × cosϑ + (12) × sinϑ gives

ṙ = r(2− r6)(r2 − 6). (13)

Next we compute (11) × sinϑ - (12) × cosϑ:

−rϑ̇ = r

Dividing by r gives

ϑ̇ = −1. (14)

Since ϑ̇ �= 0 the origin is the only fixed point. 1

— 2 —
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(ii) We have ṙ = 0 for r =
√
6 and r = 21/6, which means the limit cycles are at

r =
√
6 ,21/6. The equations (13) and (14) give the phase portrait: 2

(iii) Poincaré-Bendixson theorem: Let ϕt be a flow for the system �̇x = �F (�x) 2

and let D be a closed, bounded and connected set D ∈ R2, such that ϕt(D) ⊂ D
for all time. Furthermore D does not contain any fixed point. Then there exists

at least one limit cycle in D.

For r = 1 we compute 3

ṙ(1) = 1(2− 1)(1− 6) = −5 < 0,

and for r = 3 we have

ṙ(3) = 3(2− 36)(32 − 6) = −6543 < 0.

⇒ trajectories which enter the region D can also leave it again. This means the

Poincaré-Bendixson theorem can not be used to deduce that a limit cycle exists

in D.
(iv) Def.: The ω-limit set (or positive limit set) Lω(�x) of a point �x contains those 1

points which are approached by the trajectory through �x as t→∞, that is

Lω(�x) = {�y ∈ Rn : ∃ a sequence of times tn with tn →∞,
such that lim

n→∞
ϕtn(�x) = �y

�

Def.: The α-limit set (or negative limit set) Lα(�x) of a point �x contains those

points which are approached by the trajectory through �x as t→−∞, that is

Lα(�x) = {�y ∈ Rn : ∃ a sequence of times tn with tn → −∞,
such that lim

n→∞
ϕtn(�x) = �y

�

Accordingly we compute for (13) and (14) 3

Lα(�x) =






0 for r = 0

C21/6 for 0 < r <
√
6

C√6 for r =
√
6

∅ r >
√
6

Lω(�x) =






0 for 0 ≤ r < 1

C21/6 for r = 21/6

C√6 for r > 21/6

— 3 —
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Def.: A closed orbit φ is a limit cycle if φ is a subset of an α or ω-limit set 2

for some point �x /∈ φ.

Def.: A limit cycle φ is a called a stable (unstable) limit cycle, if φ = Lω(�x)

(φ = Lα(�x)) for all �x in some neighbourhood of the limit cycle.

Def.: A limit cycle φ is a called a semi-stable limit cycle, if it is a stable limit

cycle for points on one side and an unstable limit cycle for point on the other

side.

Therefore C21/6 is unstable and C√6 is stable.
(v) Bendixson’s criterium: Let D be a simply connected region of the phase 2

plane in which the function �F (�x) of the system �̇x = �F (�x) has the property that

its divergence is of constant sign, i.e.

div �F =
∂F1
∂x1

+
∂F2
∂x2

< 0 or div �F =
∂F1
∂x1

+
∂F2
∂x2

> 0.

Then the system posesses no closed orbit contained entirely in D.

D̂ is not a simply connected region and therefore we can not apply Bendixson’s

criterium to decide whether it contains limit cycles or not.
�
= 20

3. (i) Bifurcation theory investigates how the number of steady solutions of systems 2

of the type ẋ = F (x, λ) depend on the parameter λ. A bifurcation occurs if the

solution of ẋ = F (x, λ) changes its qualitative behaviour as the parameter λ

varies.

• A point (x0, λ0) on the equilibrium curve for the system ẋ = F (x, λ) is 2

called a pitchfork bifurcation if ∂F/∂λ|(x
0
,λ0) = 0, ∂F/∂x|(x

0
,λ0) = 0 and

dλ/dx changes sign on one branch of the equilibrium curve with distinct

tangents, where λ(x) is the solution of the equation F (x, λ) = 0.

∂F/∂λ|(x0,λ0) = 0 gives x0 = 0 and subsequently ∂F/∂x|(x0,λ0) = 0 gives

λ0 = 0. Since dλ/dx = 2x changes sign at x0 = 0 and this branch has

a different tangent than x1 = 0, the point (x0, λ0) = (0, 0) constitutes a

pitchfork bifurcation.

• A point (x0, λ0) on the equilibrium curve for the system ẋ = F (x, λ) is 2

called a transcritical bifurcation if ∂F/∂λ|(x
0
,λ0) = 0, ∂F/∂x|(x

0
,λ0) = 0

and in addition two and only two branches of the equilibrium curve pass

through this point which have both distinct tangents at (x0, λ0).

For γ �= 0 we have dλ/dx = 2x+γ, which no longer changes sign at x0 = 0.

However, only two branches pass through this point and their tangents are

distinct, such that (x0, λ0) = (0, 0) constitutes a transcritical bifurcation.

• A point (x0, λ0) on the equilibrium curve for the system ẋ = F (x, λ) is 2

called a turning point if ∂F/∂λ|(x
0
,λ0) �= 0 and ∂λ/∂x changes sign at this

point.

(ii) Defining x1 = x and : x2 = ẋ the differential equation converts into 6

— 4 —
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ẋ1 = x2

ẋ2 = −λ(x21 − 1)x2 − 1

The fixed point is at (x1, x2) = (0, 0). The Jacobian is computed to

J =

�
0 1

−1 λ

�

,

such that the eigenvalues are

e±(λ) =
λ

2
± λ

2



λ2 − 4.

Therefore

0 < λ < 2 ⇒ (0, 0) is an unstable focus

λ = 0 ⇒ (0, 0) is a centre

−2 < λ < 0 ⇒ (0, 0) is a stable focus





≡ Hopf bifurcation

(iii) Hopf bifurcation theorem: Let the point (0,0,λ), with λ ∈ R, be a fixed point 6

for the system

ẋ1 = F1(x1, x2, λ), (15)

ẋ2 = F2(x1, x2, λ), (16)

for all values of λ. If for a particular value of λ, say λ = λ̃,

i) the eigenvalues e1(λ) and e2(λ) of the linearized system are purely imaginary,

i.e. e1(λ̃) ∈ iR and e2(λ̃) ∈ iR,

ii) the real part of the eigenvalues Re(e1(λ)) = Re(e2(λ)) satisfies

d

dλ
Re(e1/2(λ))

����
λ=λ̃

> 0, (17)

iii) the origin is asymptotically stable for λ = λ̃,

then the following statements hold:

a) The point with λ = λ̃ is a bifurcation point of the system.

b) For λ ∈ (λ1, λ̃) with some λ1 < λ̃ the origin is a stable focus.

c) For λ ∈ (λ̃, λ2) with some λ2 > λ̃ the origin is an unstable focus surrounded

by a stable limit cycle whose size increases with λ.

The eigenvalues for the Jacobian matrix with λ �= 0 were computed to

e±(λ) =
λ

2
± λ

2



λ2 − 4.

i) for λ = 0 the eigenvalues are purely imaginary: e± = ±i2.
ii) we compute

d

dλ
Re(e1/2(λ))

����
λ=λ̃=0

=
1

2
> 0.

— 5 —
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iii) We find I = 0 and therefore we can not use the stability index to establish

point iii) of the theorem.
�
= 20

4. We have

H(x1, x2, p1, p2) =
1

2m
(p21 + p22) +

k

2
(x21 + x22).

(i) The equations of motion result to 2

∂H
∂x1

= kx1 = −ṗ1 ∂H
∂x2

= kx2 = −ṗ2
∂H
∂p1

= 1
mp1 = ẋ1

∂H
∂p2

= 1
mp2 = ẋ2

(ii) The Poisson bracket is defined as 6

{f, g} :=
N/2�

k=1

∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk
.

For L(x1, x2, p1, p2) = x1p2 − x2p1 we compute

L̇ = {L,H} = ∂L

∂x1

∂H

∂p1
− ∂L

∂p1

∂H

∂x1
+

∂L

∂x2

∂H

∂p2
− ∂L

∂p2

∂H

∂x2

= p2
1

m
p1 + x2kx1 − p1

1

m
p2 − x1kx2 = 0.

Therfore L is conserved in time.

For K(x1, x2, p1, p2) =
1
2m(p

2
1 − p22) +

k
2(x

2
1 − x22) we compute

K̇ = {K,H} = ∂K

∂x1

∂H

∂p1
− ∂K

∂p1

∂H

∂x1
+

∂K

∂x2

∂H

∂p2
− ∂K

∂p2

∂H

∂x2

= kx1
1

m
p1 −

1

m
p1kx1 − kx2

1

m
p2 +

1

m
p2kx2 = 0

Therfore K is conserved in time.

(iii) Jacobi-Poisson theorem: The Poisson bracket of two constants of motion 6

I 1(x1, x2, t) and I 2(x1, x2, t) is also a constant of motion.

We compute

{L,K} = ∂L

∂x1

∂K

∂p1
− ∂L

∂p1

∂K

∂x1
+

∂L

∂x2

∂K

∂p2
− ∂L

∂p2

∂K

∂x2

= p2
1

m
p1 + x2kx1 + p1

1

m
p2 + x1kx2

=
2

m
p1p2 + 2kx2x1 =:M

Verify that M is conserved

Ṁ = {M,H} = ∂M

∂x1

∂H

∂p1
− ∂M

∂p1

∂H

∂x1
+

∂M

∂x2

∂H

∂p2
− ∂M

∂p2

∂H

∂x2

= 2kx2
1

m
p1 −

2

m
p2kx1 + 2kx1

1

m
p2 −

2

m
p1kx2 = 0.

Therefore {L,K} =M is conserved in time

— 6 —
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(iv) The new quantity is not independent as 6

H2 = K2 +
1

4
M2 +

k

m
L2

�
= 20

5. (i) We can write

xn+1 = F (xn) = (xn + 2λ)(xn − 6λ)

This means we have fixed points at 1

x
(1)
f = −2λ and x

(2)
f = 6λ.

A fixed point xf is stable iff |F ′(xf )| < 1. With F ′(x) = 2x− 4λ follows that
x
(1)
f is stable for |4λ+ 4λ| < 1, that is λ < 1/8.

x
(2)
f is stable for |6λ− 4λ| < 1, that is λ < 1/2. 3

(ii) A 2-cycle exists if F (F (x)) = x. Compute 1

x = (F (x) + 2λ)(F (x)− 6λ)
= F 2(x)− 4λF (x)− 12λ
= (x+ 2λ)2(x− 6λ)2 − 4λ(x+ 2λ)(x− 6λ)− 12λ
= x4 − 8λx3 − 8λ2x2 − 4λx2 + 96λ3x+ 16λ2x+ 144λ4 + 48λ3 − 12λ2

Since the fixed point is a solution of this equation, we can factor out the term 5

F (x)− x, i.e.

F (F (x))− x = (F (x)− x)p(x)

By polynomial devision we find 4

p(x) = x2 − 4λx+ x− 12λ2 − 4λ+ 1

This means for a two cycle to exist we require

x2 − 4λx+ x− 12λ2 − 4λ+ 1 = 0.

Solving this quadratic equation for x gives

x± =
1

2

�
4λ− 1±



64λ2 + 8λ− 3

�

For this to be real we require

64λ2 + 8λ− 3 ≥ 0.

Therefore the existence of a two cycle is ensured iff
�
λ+

1

16
(1 +

√
13)

� �
λ+

1

16
(1−

√
13)

�
≥ 0,

which means λ ≥ 1
16(
√
13− 1). 3

— 7 —
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(iii) The 2 cycle is stable if for G(x) = F (F (x))

��G′(x)
�� < 1 ⇔

��F ′(x+)F ′(x−)
�� < 1

Compute

|(2x+ − 4λ)(2x− − 4λ)| =
��−64λ2 − 8λ+ 4

�� < 1

This means
�
λ+

1

16
(1 +

√
13)

� �
λ+

1

16
(1−

√
13)

�
< 0 ⇒ λ <

1

16
(
√
13− 1)

�
λ+

1

16
(1 +

√
21)

� �
λ+

1

16
(1−

√
21)

�
> 0 ⇒ λ >

1

16
(
√
21− 1)

The domain of stability for the 2 cycle is empty. The two cycle is always unstable. 3
�
= 20
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