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MA3608 Dynamical Systems II

Solutions and marking scheme for exam January 2013

������������: Full marks are obtained for correct answers to three of the five questions.

Each question carries 25 marks.

(All questions are unseen, apart from definitions and theorems.)

1. Consider the dynamical system of the form

ẋ1 = x2 − x32 =: X1,

ẋ2 = −x1 − x22 =: X2.

(i) In order to find the fixed points we need to solve 2

0 = x2 − x32, and 0 = −x1 − x22.

We find three solutions

x
(1)
F = (0, 0), x

(2)
F = (−1,−1) and x

(3)
F = (−1, 1).

(ii) Linearization theorem: Consider a nonlinear system which possesses a simple 1

linearization at some fixed point. Then in a neighbourhood of the fixed point

the phase portraits of the linear system and its linearization are qualitatively

equivalent, if the eigenvalues of the Jacobian matrix have a nonzero real part,

i.e. the linearized system is not a centre.

We need to compute the Jacobian:

A =

�
∂X1
∂x1

∂X1
∂x2

∂X2
∂x1

∂X2
∂x2

������
xF

We find

A(x1, x2) =

�
0 1− 3x22
−1 −2x2

�

,

and therefore 2

A(x
(1)
F ) =

�
0 1

−1 0

�

, A(x
(2)
F ) =

�
0 −2
−1 2

�

, A(x
(3)
F ) =

�
0 −2
−1 −2

�

.
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Next we compute the eigenvalues of A(xF ) 2

det

�

A(x
(1)
F )− λ

�
1 0

0 1

��

= 1 + λ2 = 0⇒ λ
(1)
± = ±i,

det

�

A(x
(2)
F )− λ

�
1 0

0 1

��

= −2− 2λ+ λ2 = 0⇒ λ
(2)
± = 1±

√
3,

det

�

A(x
(3)
F )− λ

�
1 0

0 1

��

= −2 + 2λ+ λ2 = 0⇒ λ
(3)
± = −1±

√
3.

This means the linearization theorem can not be applied for x
(1)
F , but for x

(2)
F

and x
(3)
F . We have a centre at x

(1)
F and saddle points at x

(2)
F and x

(3)
F . 2

(iii) We compute the eigenvectors for A(x
(2)
F ) and A(x

(3)
F ): 2

x
(2)
F :

�
0 −2
−1 2

��
a

b

�

= 1±
√
3

�
a

b

�

⇒ v
(2)
± =

�
1∓

√
3

1

�

x
(3)
F :

�
0 −2
−1 −2

��
a

b

�

= −1±
√
3

�
a

b

�

⇒ v
(3)
± =

�
−1∓

√
3

1

�

This means the matrix U = {v+,v−} can be used to transform A into the Jordan

normal form. Therefore

�
U (2)

�−1
A(x

(2)
F )U (2) =

�
λ
(2)
+ 0

0 λ
(2)
−

�

with U (2) =
�
v
(2)
+, v

(2)
−

	
,

�
U (3)

�−1
A(x

(3)
F )U (3) =

�
λ
(3)
+ 0

0 λ
(3)
−

�

with U (3) =
�
v
(3)
+, v

(3)
−

	
.

(This does not have to be computed as it is known to be correct, but can be

used as consistency check.) We use U to transform the separatrices of the phase

portrait for a saddle point belonging to a linearized system in Jordan normal.

For x
(2)
F we compute 3

U (2)

�
a

0

�

=

�
(1−

√
3)a

a

�

, U (2)

�
0

a

�

=

�
(1 +

√
3)a

a

�

, a ∈ R.

The local phase portraits for the linearized system related to {{λ(2)+ , 0}, {0, λ(2)− }}
and A(x

(2)
F ), respectively, results to:

— 2 —



MA3608 , Andreas Fring, Dynamical Systems II

(Full marks are given for a qualitatively correct transformation, i.e. for correct

transformed directrices together with a few lines in between with the correct

direction of time indicated.)

For x
(3)
F we compute 3

U(3)

�
a

0

�

=

�
(−1−

√
3)a

a

�

, U (3)

�
0

a

�

=

�
(−1 +

√
3)a

a

�

, a ∈ R.

The local phase portraits for the linearized system related to {{λ(3)+ , 0}, {0, λ(3)
−
}}

and A(x
(3)
F ), respectively, results to:

(iv) We have ẋ1 > 0 for x2(1− x22) > 0, i.e. x2 > 0 ∧ x22 < 1 ∨ x2 < 0 ∧ x22 > 1. 2

We have ẋ2 > 0 for −x1 − x22 > 0, i.e. −x1 > x22.

We compute the isoclines to

dx2
dx1

=
ẋ2
ẋ1

=
−x1 − x22
x2 − x32

=



0 for x1 = −x22
∞ for x2 = 0, x2 = ±1

(v) Assembling the information from (i)−(iv) we obtain the following phase portrait:

— 3 —
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6
�

= 252. (i) The Jacobian is computed to

3

A((0, 0)) =

�
1 −1
1 1

�

.

The eigenvalues are λ± = 1± i and therefore the origin is an unstable focus.

(ii) With x1 = r cosϑ and x2 = r sinϑ we obtain 5

ẋ1 = ṙ cosϑ− r sinϑϑ̇ = r cosϑ− r sinϑ− r cosϑ(r2 + 4r2 sin2 ϑ) (1)

ẋ2 = ṙ sinϑ+ r cosϑϑ̇ = r cosϑ+ r sinϑ− r sinϑ(r2) (2)

where x21 + x22 = r2. Computing (1) × cosϑ + (2) × sinϑ gives

ṙ = r − r3 − 4r3 sin2 ϑ cos2 ϑ

= r[1− r2 − r2 sin2(2ϑ)].

Next we compute (2) × cosϑ− (1) × sinϑ :

rϑ̇ = r + 4r3 cosϑ sin3 ϑ

Dividing by r gives

ϑ̇ = 1 + 2r2 sin2 ϑ sin 2ϑ.

For the fixed point we have ϑ̇ = 0 and ṙ = 0. Therefore 1

1 + 2r2 sin2 ϑ sin(2ϑ) = 0 and 1− r2 − r2 sin2(2ϑ) = 0,

which means we have to have

1 + sin2(2ϑ) + 2 sin2 ϑ sin(2ϑ) = 0.

As there is no real solution to this, by hint, the origin is the only fixed point.

— 4 —
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(iii) Poincaré-Bendixson theorem: Let ϕt be a flow for the system �̇x = �F (�x) 2

and let D be a closed, bounded and connected set D ∈ R2, such that ϕt(D) ⊂ D
for all time. Furthermore D does not contain any fixed point. Then there exists

at least one limit cycle in D.
For D =

�
(r, ϑ) : 12 ≤ r ≤ 2



we compute 4

ṙ(2) = 2[1− 4− 4 sin2(2ϑ)] < 0,

ṙ

�
1

2

�
= 2[1− 1

4
− 1

4
sin2(2ϑ)] > 0.

Therefore any trajectory which enters the region D can never leave it. Since

there is no fixed point in D, by (ii), we can employ the Poincaré-Bendixson

theorem to deduce that there is at least one limit cycle in D.
(iv) In order to find the limit cycle domain we require ṙ > 0 ∀ϑ on the inner boundary, 6

which is equivalent to

1− r2 − r2 sin2(2ϑ) > 0 ∀ϑ.

This means that for r �= 0 we demand

r2 <
1

1 + sin2(2ϑ)
∀ϑ.

If we replace the right hand side by its minimum the inequality will hold still

hold for all values of ϑ.

r2 < min

�
1

1 + sin2(2ϑ)

�
=

1

2
∀ϑ.

On the outer boundary we require ṙ < 0 ∀ϑ on the inner boundary, which is
equivalent to

r2 >
1

1 + sin2(2ϑ)
∀ϑ.

We replace the right hand side by its maximum.

r2 > max

�
1

1 + sin2(2ϑ)

�
= 1 ∀ϑ.

This means we can now define a new closed, bounded and connected set

Dε =
�
(r, ϑ) :

1√
2
− ε ≤ r ≤ 1 + ε

�
,

where 0 < ε ≪ 1. Since ṙ > 0 on the inner boundary and ṙ < 0 on the outer

boundary, this means that trajectories which enter the domain Dε do not leave
it anymore. This implies by the Poincaré-Bendixson theorem that there is at

least one periodic orbit in Dε. Since r = 1/
√
2 and r = 1 are no trajectories of

the system, the above statements are also true for ε = 0, that is we may consider

the new optimized domain

D =

�
(r, ϑ) : rmin =

1√
2
≤ r ≤ 1 = rmax

�
.

— 5 —
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(v) Def.: The ω-limit set (or positive limit set) Lω(�x) of a point �x contains those 3

points which are approached by the trajectory through �x as t→∞, that is

Lω(�x) = {�y ∈ Rn : ∃ a sequence of times tn with tn →∞,
such that lim

n→∞
ϕtn(�x) = �y

	

Def.: The α-limit set (or negative limit set) Lα(�x) of a point �x contains those

points which are approached by the trajectory through �x as t→−∞, that is

Lα(�x) = {�y ∈ Rn : ∃ a sequence of times tn with tn → −∞,
such that lim

n→∞
ϕtn(�x) = �y

	

Def.: A closed orbit φ is a limit cycle if φ is a subset of an α or ω-limit set

for some point �x /∈ φ.

The ω limit set for Ds is one of the limit cycles in Ds. 1
�

= 253. (i) Bifurcation theory investigates how the number of steady solutions of systems

1of the type ẋ = F (x, λ) depend on the parameter λ. A bifurcation occurs if the

solution of ẋ = F (x, λ) changes its qualitative behaviour as the parameter λ

varies.

• A point (x0, λ0) on the equilibrium curve for the system ẋ = F (x, λ) is 1

called a pitchfork bifurcation if ∂F/∂λ|(x
0
,λ0) = 0, ∂F/∂x|(x

0
,λ0) = 0 and

dλ/dx changes sign on one branch of the equilibrium curve with distinct

tangents, where λ(x) is the solution of the equation F (x, λ) = 0.

∂F/∂λ|(x
0
,λ0) = 0 gives x0 = 0 and subsequently ∂F/∂x|(x

0
,λ0) = 0 gives

λ0 = 0. Since dλ/dx = 2x changes sign at x0 = 0 and this branch has

a different tangent than x1 = 0, the point (x0, λ0) = (0, 0) constitutes a

pitchfork bifurcation.

• A point (x0, λ0) on the equilibrium curve for the system ẋ = F (x, λ) is 1

called a transcritical bifurcation if ∂F/∂λ|(x
0
,λ0) = 0, ∂F/∂x|(x

0
,λ0) = 0

and in addition two and only two branches of the equilibrium curve pass

through this point which have both distinct tangents at (x0, λ0).

For γ �= 0 we have dλ/dx = 2x+γ, which no longer changes sign at x0 = 0.

However, only two branches pass through this point and their tangents are

distinct, such that (x0, λ0) = (0, 0) constitutes a transcritical bifurcation.

• A point (x0, λ0) on the equilibrium curve for the system ẋ = F (x, λ) is 1

called a turning point if ∂F/∂λ|(x
0
,λ0) �= 0 and ∂λ/∂x changes sign at this

point.

(ii) To find the fixed points we need to solve 2

0 = 1− (1 + λ)x1 + γx21x2 and 0 = λx1 − γx21x2,

which gives as the only solution

x1 = 1 and x2 = λ/γ ⇒ xF = (1, λ/γ)

— 6 —
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The Jacobian is computed to

A(x1, x2) =

�
−1− λ+ 2γx1x2 γx21

λ− 2γx1x2 −γx21

�

.

therefore 4

A(xF ) =

�
λ− 1 γ

−λ −γ

�

.

The eigenvalues are computed to

e± =
λ− γ − 1

2
± 1

2

�
(1− λ+ γ)2 − 4γ

For instance: When λ = γ + 1 we have a centre since e± = ±i√γ ∈ iR. When 3

λ = γ + 1 + 2
√
γ we have e− = e+ =

√
γ > 0 which is an unstable improper

node as the Jordan normal form is not diagonal. When λ = γ + 1 − 2
√
γ we

have e− = e+ = −√γ < 0 which is a stable improper node as the Jordan normal

form is not diagonal. (Any other three of the ten possibilities are also fine.)

(iii) Hopf bifurcation theorem: Let the point (0,0,λ), with λ ∈ R, be a fixed point 4

for the system

ẋ1 = F1(x1, x2, λ),

ẋ2 = F2(x1, x2, λ),

for all values of λ. If for a particular value of λ, say λ = λ̃,

i) the eigenvalues e1(λ) and e2(λ) of the linearized system are purely imaginary,

i.e. e1(λ̃) ∈ iR and e2(λ̃) ∈ iR,

ii) the real part of the eigenvalues Re(e1(λ)) = Re(e2(λ)) satisfies

d

dλ
Re(e1/2(λ))

����
λ=λ̃

> 0,

iii) the origin is asymptotically stable for λ = λ̃,

then the following statements hold:

a) The point with λ = λ̃ is a bifurcation point of the system.

b) For λ ∈ (λ1, λ̃) with some λ1 < λ̃ the origin is a stable focus.

c) For λ ∈ (λ̃, λ2) with some λ2 > λ̃ the origin is an unstable focus surrounded

by a stable limit cycle whose size increases with λ.

(iv) For λ̃ = γ+1 we have e± = ±i√γ ∈ iR, which means a centre. For λ < λ̃ we have 3

a stable fixed point and for λ > λ̃ we have an unstable fixed point. This means as

λ varies from λ < λ̃ to λ > λ̃ the fixed point changes its characteristic behaviour

from stable, to centre, to unstable, i.e. it undergoes a Hopf bifurcation.

— 7 —
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(v) The Jacobian for the linearized system in Jordan normal form is 5

J =

�
0 −√γ√
γ 0

�

.

Therefore the dynamical system takes on the form

ẋ1 = −
√
γx2, and ẋ2 =

√
γx1,

such that

ẍ1 = −
√
γẋ2 = −γx1.

The solution of this equation is x1 = c1 sin(
√
γx1) + c2 cos(

√
γx1). Therefore

the period is estimated to

T =
2π√
γ
.

�
= 25

4. (i) Def.: A system of differential equations on R2 is said to be a Hamiltonian system 3

with one degree of freedom if there exists a twice continuously differentiable func-

tion H(x1, x2) such that

ẋ1 =
∂H

∂x2
and ẋ2 = −

∂H

∂x1
. (3)

The equations (3) are said to be the equations of motions corresponding to

the Hamiltonian H. When H does not depend explicitly on the time t, i.e. it

is of the form H(x1(t), x2(t)) and not H(x1(t), x2(t), t), the system is called

autonomous.

(ii) Any nondegenerate fixed point of a Hamiltonian system is either a saddle point 7

or a centre.

Proof: We compute the Jacobian matrix to

A =

�
∂2H
∂x1∂x2

∂2H
∂x2

2

−∂2H
∂x2

1

− ∂2H
∂x1∂x2

������
�xf

=:

�
H12 H22
−H11 −H12

������
�xf

.

The eigenvalues are then obtained from

det(A− λI) = (H12 − λ)(−H12 − λ) +H11H22 = 0,

such that

λ2 = −H11H22 +H2
12.

When the fixed point is nondegenerate we only have the two possibilities

H2
12 −H11H22



> 0 ≡ real eigenvalues of opposite sign ≡ saddle point

< 0 ≡ purely imaginary eigenvalues ≡ centre
,

which is what we wanted to prove. �

— 8 —
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(iii) A dynamical system 2

ẋ1 = F1(x1, x2) and ẋ2 = F2(x1, x2),

is a Hamiltonian system if and only if

div �F =
∂F1
∂x1

+
∂F2
∂x2

= 0.

We compute 5

div �F = x22x1(2α+ 3β)e(α−1)x
2

1 + α(5α− 2)x22x
3
1e
(α−1)x2

1 + 2+ γ = 0.

Therefore the system is a Hamiltonian system when α = 2/5, β = −4/15,
γ = −2 or α = 0, β = 0, γ = −2.

(iv) Def.: A Hamiltonian system which is of the form 2

H(x1, x2) =
1

2
x22 + V (x1),

where V (x1) is a function which only depends on x1 and not x2 is called a

potential system with potential (function) V (x1).

From the definition in (i) follows 4

ẋ1 =
∂H

∂x2
= x2 ⇒ H(x1, x2) =

1

2
x22 + f(x1)

ẋ2 = −∂H

∂x1
= x21 +

5

(3− x1)(2 + x1)
⇒ H(x1, x2) =

x31
3

+ ln
2 + x1
3− x1

+ f̃(x2).

with f(x1) and f̃(x2) some arbitrary functions. Therefore

H(x1, x2) =
1

2
x22 +

x31
3

+ ln
2 + x1
3− x1

+ c,

such that the potential is

V (x1) =
x31
3

+ ln
2 + x1
3− x1

+ c.

From V (0) = 0 follows c = − ln(2/3).

(v) Jacobi-Poisson theorem: The Poisson bracket of two constants of motion 2

I 1(x1, x2, t) and I 2(x1, x2, t)

{I1, I2} :=
∂ I1
∂x1

∂I2
∂x2

− ∂ I1
∂x2

∂I2
∂x1

.

is also a constant of motion.
�

= 25

— 9 —
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5. (i) The fixed points are found from 1

F (x) = x ⇔ 3x− 6λx+ 2λx2 = x

This means we have fixed points at 5

x
(1)
f = 0 and x

(2)
f = 3− 1

λ
.

A fixed point xf is stable iff |F ′(xf )| < 1.

With F ′(x) = 3− 6λ+ 4λx follows that

x
(1)
f is stable for |3− 6λ| < 1⇔ (λ− 1/3)(λ− 2/3) < 0, that is 1/3 < λ < 2/3.

x
(2)
f is stable for |3− 6λ+ 4(3λ− 1)| < 1,⇔ 12λ(3λ−1) < 0 that is 0 < λ < 1/3.

(ii) A k-cycle exists iff F k(x) = x. For the 2-cycle we therefore have to evaluate 6

F (F (x)) = x

x = 3F (x)− 6λF (x) + 2λF 2(x),

= 3(3x− 6λx+ 2λx2)− 6λ(3x− 6λx+ 2λx2) + 2λ(3x− 6λx+ 2λx2)2,

= 8λ3x4 − 48λ3x3 + 24λ2x3 + 72λ3x2 − 84λ2x2 + 24λx2 + 36λ2x− 36λx+ 9x.

Since the fixed point is a solution of this equation, we can factor out the term

F (x)−x. Not knowing the answer this can be done by polynomial division, but

in this case it is sufficient to verify that: 4

(F (x)− x) (4λ2x2 +
�
8λ− 12λ2

�
x+ 4− 6λ)

= 8λ3x4 − 48λ3x3 + 24λ2x3 + 72λ3x2 − 84λ2x2 + 24λx2 + 36λ2x− 36λx+ 9x = 0

This means we require 4

4λ2x2 +
�
8λ− 12λ2

�
x+ 4− 6λ = 0

for a two cycle to exist. Solving this quadratic equation gives

x± =
3λ2 − 2λ±

√
3
�
3λ4 − 2λ3

2λ2

For this to be real we require

3λ− 2 ≥ 0.

Therefore the existence of a two cycle is ensured iff

λ ≥ 2

3
.

(iii) The 2 cycle is stable when 3

��G′(x)
�� < 1 ⇔

��F ′(x+)F ′(x−)
�� < 1

— 10 —
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where G(x) = F (F (x)). We compute therefore

|(3− 6λ+ 4λx+)(3− 6λ+ 4λx−)| =
��1 + 24λ− 36λ2

�� < 1

⇔ 24λ(3λ− 2)
�
18λ2 − 12λ− 1

�
< 0

This means the two cycle is stable in the regime 2

2

3
< λ <

1

6
(2 +

√
6)

and unstable for λ > 1
6(2 +

√
6)

�
= 25
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