

Dynamical Systems II

Coursework 1 (Solutions)

Hand in the complete solutions to all three questions in the general office (room C123).

DEADLINE: Tuesday 10/11/2009 at 16:00

1) Consider the linear dynamical system of the form

$$\dot{x}_1 = ax_1 + bx_2 \\ \dot{x}_2 = cx_1 + dx_2$$
 with $a, b, c, d \in \mathbb{R}.$ (1)

The Jacobian is

$$J = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

The eigenvalues are computed from $det(J - \lambda \mathbb{I}) = 0$, i.e.

$$\lambda^2 - (a+d)\lambda + ad - bc = 0,$$

which is solved by

$$\lambda_{\pm} = \frac{a+d}{2} \pm \frac{1}{2}\sqrt{a^2 + 4bc - 2ad + d^2} = \alpha \pm i\beta.$$

This means

$$a^{2} + 4bc - 2ad + d^{2} = (a - d)^{2} + 4bc < 0.$$
 (2)

Let us now assume that the equations (1) have a solution of the general form

$$x_1 = Ae^{\lambda t}, \qquad x_2 = Be^{\lambda t} \qquad \text{for } A, B \in \mathbb{R}.$$
 (3)

Then, substituting this into (1) gives

$$A\lambda e^{\lambda t} = aAe^{\lambda t} + bBe^{\lambda t},$$

$$B\lambda e^{\lambda t} = cAe^{\lambda t} + dBe^{\lambda t},$$

which corresponds to

$$(a - \lambda)A + bB = 0, \qquad \Leftrightarrow \quad (J - \lambda \mathbb{I}) \begin{pmatrix} A \\ B \end{pmatrix} = 0.$$

These equations only have nontrivial solutions when $det(J - \lambda \mathbb{I}) = 0$, such that the general solution (3) becomes

$$x_1 = A_1 e^{\lambda_+ t} + A_2 e^{\lambda_- t} = e^{\alpha t} (A_1 e^{i\beta t} + A_2 e^{i\beta t}),$$

$$x_2 = B_1 e^{\lambda_+ t} + B_2 e^{\lambda_- t} = e^{\alpha t} (B_1 e^{-i\beta t} + B_2 e^{-i\beta t}).$$

Clearly for $\alpha < 0$ we have $x_{1/2} \to 0$ for $t \to \infty$.

Next we establish that the trajectory spirals into the origin. Using $x_1 = r \cos \vartheta$ and $x_2 = r \sin \vartheta$ we have $\vartheta = \arctan x_2/x_1$, such that

$$\dot{\vartheta} = \frac{\partial\vartheta}{dx_1}\dot{x}_1 + \frac{\partial\vartheta}{dx_2}\dot{x}_2 = -\frac{x_2\dot{x}_1}{x_1^2 + x_2^2} + \frac{x_1\dot{x}_2}{x_1^2 + x_2^2} = \frac{x_1(cx_1 + dx_2) - x_2(ax_1 + bx_2)}{x_1^2 + x_2^2} = \frac{cx_1^2 - bx_2^2 + (d - a)x_1x_2}{x_1^2 + x_2^2}.$$

We have used here $\partial \vartheta / dx_1 = -x_2/(x_1^2 + x_2^2)$ and $\partial \vartheta / dx_2 = x_1/(x_1^2 + x_2^2)$. From (2) we know that b and c must have opposite signs.

- for $x_2 = 0$ we have $\dot{\vartheta} = c > 0$ for b < 0, c > 0 or $\dot{\vartheta} = c < 0$ for b > 0, c < 0
- for $x_2 \neq 0$ we have $\dot{\vartheta} \neq 0$ or $cx_1^2 bx_2^2 + (d-a)x_1x_2 = 0$. From the latter follows

$$c\frac{x_1^2}{x_2^2} - b + (d-a)\frac{x_1}{x_2} = 0,$$

which means

$$\frac{x_1}{x_2} = \frac{a-d}{2c} \pm \frac{1}{2c}\sqrt{a^2 + 4bc - 2ad + d^2}.$$
(4)

As we know from (3) that $a^2 + 4bc - 2ad + d^2 < 0$ there is no real solution to (4) and therefore $\dot{\vartheta} \neq 0$ for $x_2 \neq 0$.

Therefore when b < 0, c > 0, a + d < 0 the trajectories spiral anti-clockwise into the origin and when b > 0, c < 0, a + d < 0 the trajectories spiral clockwise into the origin.

2) We have

$$\dot{x}_1 = x_2 + x_1(3 - x_1^2 - x_2^2)(x_1^4 + x_2^4 + 2x_1^2x_2^2 - 1)^2$$

$$\dot{x}_2 = -x_1 + x_2(3 - x_1^2 - x_2^2)(x_1^4 + x_2^4 + 2x_1^2x_2^2 - 1)^2$$

i) With $x_1 = r \cos \vartheta$ and $x_2 = r \sin \vartheta$, we obtain

$$\dot{x}_1 = \dot{r}\cos\vartheta - r\sin\vartheta\dot{\vartheta} = r\sin\vartheta + r\cos\vartheta(3 - r^2)(r^4 - 1)^2 \tag{5}$$

$$\dot{x}_2 = \dot{r}\sin\vartheta + r\cos\vartheta\dot{\vartheta} = -r\cos\vartheta + r\sin\vartheta(3-r^2)(r^4-1)^2 \tag{6}$$

where we used $x_1^2 + x_2^2 = r^2$ and $x_1^4 + x_2^4 + 2x_1^2x_2^2 = r^4$. Computing (5)cos ϑ +(6)sin ϑ gives

$$\dot{r} = r(3 - r^2)(r^4 - 1)^2 \tag{7}$$

 $\sum = 20$

and (6) $\cos \vartheta$ -(5) $\sin \vartheta$ yields

$$\dot{r\vartheta} = -r \quad \Rightarrow \quad \dot{\vartheta} = -1.$$
 (8)

Since $\dot{\vartheta} \neq 0$ for all time, the origin is the only fixed point.

ii) With (7) we compute \dot{r} at the inner and outer boundary of

$$\mathcal{D} = \{ (r, \vartheta) : 1/2 \le r \le 2 \} .$$

We find

$$\dot{r}(r=1/2) = \frac{1}{2} \frac{11}{4} \left(-\frac{15}{16}\right)^2 > 0$$

$$\dot{r}(r=2) = 2(-1)15^2 < 0.$$

 \Rightarrow trajectories which enter $\mathcal D$ never leave it.

 \Rightarrow It follows by the Poincaré-Bendixson theorem that there is at least one limit cycle in $\mathcal{D}.$

iii) We have

$$\dot{r} = 0 \qquad \text{for } r = 0, 1, \sqrt{3} \equiv \text{limit cycles}$$

$$\dot{r} > 0 \qquad \text{for } 0 < r < 1$$

$$\dot{r} > 0 \qquad \text{for } 1 < r < \sqrt{3}$$

$$\dot{r} < 0 \qquad \text{for } \sqrt{3} < r$$

$$\dot{\vartheta} = -1 \qquad \equiv \text{ clockwise direction}$$

Assembling all this gives the following phase portrait.

iv) The α and ω limit sets are

$$L_{\alpha}(\vec{x}) = \begin{cases} (0,0) & \text{for } r < 1\\ C_1 & \text{for } 1 \le r < \sqrt{3}\\ C_{\sqrt{3}} & \text{for } r = \sqrt{3}\\ \varnothing & \text{for } \sqrt{3} < r \end{cases} \quad L_{\omega}(\vec{x}) = \begin{cases} (0,0) & \text{for } r = 0\\ C_1 & \text{for } 0 < r \le 1\\ C_{\sqrt{3}} & \text{for } 1 < r \end{cases}$$

5

3

5

- C_1 is semistable and $C_{\sqrt{3}}$ is stable.
- These findings are consistent with the conclusions drawn in ii), both limit cycles are in \mathcal{D} .
- Defining a domain

$$\mathcal{D}' = \left\{ (r, \vartheta) : \sqrt{3} - \varepsilon \le r \le \sqrt{3} + \varepsilon \right\}$$

we can use the same arguments as in ii) to conclude that there is a limit cycle in \mathcal{D}' .

• However, we can not define such an annular region around C_1 , as for

$$\mathcal{D}'' = \{ (r, \vartheta) : 1 - \varepsilon \le r \le 1 + \varepsilon \}$$

the trajectories will enter \mathcal{D}'' on the inner boundary and leave it at the outer boundary. Thus the Poincaré-Bendixson theorem can not be applied in this case.

v) Bendixson's criterium requires the region to be simply connected, which is not the case for $\hat{\mathcal{D}}$. Therefore the criterium can not be applied.

3) We have

$$\dot{x}_1 = x_1 x_2^2 - 9x_1 - 16x_2^3$$
$$\dot{x}_2 = 4x_1 x_2^2 + 2x_2 x_1^2$$

- i) Lyapunov stability theorem: Consider the system $\dot{\vec{x}} = \vec{X}(\vec{x})$ with a fixed point at the origin. If there exists a real valued function $V(\vec{x})$ in a neighbourhood $N(\vec{x}=0)$ such that:
 - a) the partial derivatives $\partial V/\partial x_1$, $\partial V/\partial x_2$ exist and are continuous
 - b) the function $V(\vec{x})$ is positive definite
 - c) dV/dt is negative semi-definite (definite)

then the origin is a stable (asymptotically stable) fixed point.

Def.: A function V for which the conditions i)-iii) hold with iii) semi-definite is called weak Lyapunov function.

Def.: A function V for which the conditions i)-iii) hold with iii) definite is called strong Lyapunov function.

Verify the requirements a)-c) for $V(x_1, x_2) = 4x_1^2 + 16x_2^2$

- a) Clearly the partial derivatives $\partial V/\partial x_1$, $\partial V/\partial x_2$ exist and are continuous.
- b) :: V(0,0) = 0 and $V(x_1, x_2) > 0$ for $(x_1, x_2) \neq 0$

 \Rightarrow the function $V(x_1, x_2) = 4x_1^2 + 16x_2^2$ is positive definite

c) Compute dV/dt:

$$\begin{split} \dot{V} &= \frac{\partial V}{\partial x_1} \dot{x}_1 + \frac{\partial V}{\partial x_2} \dot{x}_2 \\ &= 8x_1(x_1 x_2^2 - 9x_1 - 16x_2^3) + 32x_2(4x_1 x_2^2 + 2x_2 x_1^2) \\ &= 8x_1^2 x_2^2 - 72x_1^2 - 128x_1 x_2^3 + 128x_1 x_2^3 + 64x_2^2 x_1^2 \\ &= -8x_1^2 [9 - x_2^2(1+8)] \\ &= -72x_1^2 (1 - x_2^2) \end{split}$$

 $\Rightarrow \dot{V} = 0 \text{ for } (0, x_2)$ $\Rightarrow \dot{V} \le 0 \text{ for } |x_2| < 1$ $\Rightarrow \text{ is negative semi-definite}$

- $\Rightarrow V \text{ is a weak Lyapunov function} \\\Rightarrow \text{ by the Lyapunov stability theorem follows that the origin is a stable fixed} \\point.$
- *ii*) For $|x_2| < 1$ all points inside the level curve of $V(x_1, x_2) = 4x_1^2 + 16x_2^2$ will be dragged to the origin.

$$\Rightarrow 4x_1^2 + 16x_2^2 < 16 \quad \Rightarrow \frac{x_1^2}{4} + x_2^2 < 1$$

 \Rightarrow the length of the minor is 2 and the length of the major is 4.

iii) Corollary: Let $V(\vec{x}(t))$ be a weak Lyapunov function for the system $\dot{\vec{x}} = \vec{X}(\vec{x})$ in a neighbourhood of an isolated fixed point $\vec{x}_f = (0,0)$. Then if $\dot{V} \neq 0$ on a trajectory, except for the fixed point, the origin is asymptotically stable. For $(0, x_2)$ the dynamical system reduces to $\dot{x}_1 = -16x_2^3$ and $\dot{x}_2 = 0$. 2 This means the line $(0, x_2)$ is not a trajectory and therefore it follows from the corollary that the origin is asymptotically stable.

2