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Dynamical Systems II

Coursework 1 (Solutions)
Hand in the complete solutions to all three questions in the general office (room C123).

DEADLINE: Tuesday 10/11/2009 at 16:00

1) Consider the linear dynamical system of the form

fi=am t0T2 i abed € R, (1)
To = cx1 + dxo

The Jacobian is
ab
J = .

The eigenvalues are computed from det(JJ — Al) = 0, i.e.

M —(a+d)\+ad—bc=0,

which is solved by

1
a+di§\/a2+4bc—2ad+d2:aiiﬁ.

e =

(2)

This means
a? + 4bc — 2ad + d* = (a — d)* + 4bc < 0.

Let us now assume that the equations (1) have a solution of the general form

x; = AeM, zo = BeM for A, B € R. (3)

Then, substituting this into (1) gives
AXeN = qAeM + bBe,
BXeM = cAeM + dBe,

which corresponds to

(a—NA+bB =0, A\
cA+(d—NB=0, = (J_MD( )‘0'
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These equations only have nontrivial solutions when det(JJ — AIl) = 0, such that the
general solution (3) becomes

1 = AreMt 4 AgeMt = eat(AleiBt + Agewt),
Ty = BieMt 4 Boe ! = e (Bie P! 4 Bye ).

Clearly for a < 0 we have z/, — 0 for ¢ — oo.

Next we establish that the trajectory spirals into the origin. Using 1 = rcos and
x9 = rsind we have ¥ = arctan xs/x1, such that
a9 . a9 . Tad1 T1T2

¥ = ——iy + ——dg = —
dx1 dzo 22+ a3 22+ 2l

r1(cxy +dra) — x2(awy + bra) cx? — bzl + (d — a)z122

z3 + 23 z3 + 23
We have used here 09/dx1 = —xa/(2? + 22) and 09/dxy = x1/(23 + 23).
From (2) we know that b and ¢ must have opposite signs.
eforzo=0wehaved =c>0forb<0,c>0o0rd=c<0forb>0,c<0

e for z9 # 0 we have 9 # 0 or cx? — br3 + (d — a)z1w2 = 0. From the latter follows

2
cm—é—b+(al—a)ﬂ =0,
5 L2
which means d 1
4= :I:—\/a2+4bc—2ad+d2. (4)
T 2c 2c

As we know from (3) that a? +4bc — 2ad + d? < 0 there is no real solution to (4) and
therefore 9 # 0 for z9 # 0.

Therefore when b < 0, ¢ > 0, a + d < 0 the trajectories spiral anti-clockwise into the
origin and when b > 0, ¢ < 0, a + d < 0 the trajectories spiral clockwise into the
origin. > =20

2) We have

i1 = w9+ 21(3 — 23 — 23) (2] + 25 + 20323 — 1)?
By = —x1 + 22(3 — 2 — 22) (2] + 25 + 22223 — 1)?
i) With 1 = rcos? and x2 = rsind, we obtain
L1 = rcosty — rsin ¥ = rsind + rcos¥(3 — r2)(r4 — 1)2 (5)
By = 7sind 4 rcos ) = —rcosV + rsind(3 — r2)(r4 - 1)2 (6)
where we used 22 + 22 = r2? and z? + 24 + 20723 = r.

Computing (5)cos 94 (6)sin ¥ gives

=73 —7r?)(rt—1)>2 (7)
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and (6)cos ¥-(5)sind yields
M =—-r = 9=-1. (8)

Since @ # 0 for all time, the origin is the only fixed point.

1) With (7) we compute 7 at the inner and outer boundary of

D={(r9):1/2<r <2} .

We find
. 111 / 15)\2
i(r = 2) =2(—1)15% < 0

= trajectories which enter D never leave it.
= It follows by the Poincaré-Bendixson theorem that there is at least one limit
cycle in D.
i71) We have

r=0 for r =0,1,v/3 = limit cycles

>0 forO<r<1

>0 for1 <r <43

r <0 for V3 <r

¥=-1 = clockwise direction

Assembling all this gives the following phase portrait.

iv) The a and w limit sets are

f 1
(0,0)  for 7 < (0,00  for r=0

<
La@ =4 & for 1<r <3 Lo(@) =1{ ¢ for 0<r<1
Cys for 7 =+/3 C for 1<r
& for V3<r V3
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e (q is semistable and C /3 18 stable.

e These findings are consistent with the conclusions drawn in 4i), both limit
cycles are in D.

e Defining a domain
D/:{(r,ﬂ) V3-—e<r< \/§+5}

we can use the same arguments as in i) to conclude that there is a limit cycle
inD.

e However, we can not define such an annular region around C, as for
D'={(r,d):1—e<r<1l+e¢}

the trajectories will enter D” on the inner boundary and leave it at the outer
boundary. Thus the Poincaré-Bendixson theorem can not be applied in this

case. @

v) Bendixson’s criterium requires the region to be simply connected, which is not

the case for D. Therefore the criterium can not be applied.

S =20

3) We have

T = xlxg — 921 — 16x§

To = 4:61:r§ + 2%‘21‘%

i) Lyapunov stability theorem: Consider the system & = X (%) with a fived
point at the origin. If there exists a real valued function V(Z) in a neighbourhood
N(Z =0) such that:

a) the partial derivatives OV /0x1, OV/0xa exist and are continuous
b) the function V(Z) is positive definite
c) dV/dt is negative semi-definite (definite)

then the origin is a stable (asymptotically stable) fixed point.

Def.: A function V' for which the conditions i)-iii) hold with iii) semi-definite
1s called weak Lyapunov function.

Def.: A function V' for which the conditions i)-iii) hold with iii) definite is
called strong Lyapunov function.

Verify the requirements a)-c) for V(z1,x2) = 423 + 1623

a) Clearly the partial derivatives 0V/0x1, OV/0zy exist and are continuous.

b) -V (0,0) =0 and V(z1,x2) > 0 for (z1,22) # 0
= the function V(z1,z2) = 422 + 1623 is positive definite
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c) Compute dV/dt:

V= 8—V£f3‘1 + 8—‘/1‘2
ox1 0xo
= 8v1 (7175 — 971 — 1623) + 3222 (4x1 235 + 22927)
= 8xixd — 7222 128z x5 4 128x123 + 64ada?
= —8x7[9 — 23(1 + 8)]

= —7223(1 — x3)

= V =0 for (0, x3)
=V <0 for |z] < 1
= is negative semi-definite

= V is a weak Lyapunov function
= by the Lyapunov stability theorem follows that the origin is a stable fixed

point. @

ii) For |zo| < 1 all points inside the level curve of V(x1,x2) = 423 + 1622 will be
dragged to the origin.

2
= 42?7 + 1623 < 16 :>%+x§<1

= the length of the minor is 2 and the length of the major is 4.

iii) Corollary: Let V(Z(t)) be a weak Lyapunov function for the system & = X (Z)
in a neighbourhood of an isolated fized point Zy = (0,0). Then if V #£0 ona
trajectory, except for the fized point, the origin is asymptotically stable.

For (0,2) the dynamical system reduces to i1 = —16x3 and 29 = 0.

This means the line (0, x2) is not a trajectory and therefore it follows from the

corollary that the origin is asymptotically stable. > =10



