Dynamical Systems II

Coursework 1 (Solutions)

Hand in the complete solutions to all three questions in the general office (room C123).

DEADLINE: Tuesday 10/11/2009 at 16:00

1) Consider the linear dynamical system of the form

$$
\begin{align*}
& \dot{x}_{1}=a x_{1}+b x_{2} \tag{1}\\
& \dot{x}_{2}=c x_{1}+d x_{2}
\end{align*} \quad \text { with } \quad a, b, c, d \in \mathbb{R} .
$$

The Jacobian is

$$
J=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

The eigenvalues are computed from $\operatorname{det}(J-\lambda \mathbb{I})=0$, i.e.

$$
\lambda^{2}-(a+d) \lambda+a d-b c=0
$$

which is solved by

$$
\lambda_{ \pm}=\frac{a+d}{2} \pm \frac{1}{2} \sqrt{a^{2}+4 b c-2 a d+d^{2}}=\alpha \pm i \beta
$$

This means

$$
\begin{equation*}
a^{2}+4 b c-2 a d+d^{2}=(a-d)^{2}+4 b c<0 \tag{2}
\end{equation*}
$$

Let us now assume that the equations (1) have a solution of the general form

$$
\begin{equation*}
x_{1}=A e^{\lambda t}, \quad x_{2}=B e^{\lambda t} \quad \text { for } A, B \in \mathbb{R} \tag{3}
\end{equation*}
$$

Then, substituting this into (1) gives

$$
\begin{aligned}
A \lambda e^{\lambda t} & =a A e^{\lambda t}+b B e^{\lambda t} \\
B \lambda e^{\lambda t} & =c A e^{\lambda t}+d B e^{\lambda t}
\end{aligned}
$$

which corresponds to

These equations only have nontrivial solutions when $\operatorname{det}(J-\lambda \mathbb{I})=0$, such that the general solution (3) becomes

$$
\begin{aligned}
& x_{1}=A_{1} e^{\lambda_{+} t}+A_{2} e^{\lambda_{-} t}=e^{\alpha t}\left(A_{1} e^{i \beta t}+A_{2} e^{i \beta t}\right) \\
& x_{2}=B_{1} e^{\lambda_{+} t}+B_{2} e^{\lambda-t}=e^{\alpha t}\left(B_{1} e^{-i \beta t}+B_{2} e^{-i \beta t}\right)
\end{aligned}
$$

Clearly for $\alpha<0$ we have $x_{1 / 2} \rightarrow 0$ for $t \rightarrow \infty$.
Next we establish that the trajectory spirals into the origin. Using $x_{1}=r \cos \vartheta$ and $x_{2}=r \sin \vartheta$ we have $\vartheta=\arctan x_{2} / x_{1}$, such that

$$
\begin{aligned}
\dot{\vartheta} & =\frac{\partial \vartheta}{d x_{1}} \dot{x}_{1}+\frac{\partial \vartheta}{d x_{2}} \dot{x}_{2}=-\frac{x_{2} \dot{x}_{1}}{x_{1}^{2}+x_{2}^{2}}+\frac{x_{1} \dot{x}_{2}}{x_{1}^{2}+x_{2}^{2}} \\
& =\frac{x_{1}\left(c x_{1}+d x_{2}\right)-x_{2}\left(a x_{1}+b x_{2}\right)}{x_{1}^{2}+x_{2}^{2}}=\frac{c x_{1}^{2}-b x_{2}^{2}+(d-a) x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}}
\end{aligned}
$$

We have used here $\partial \vartheta / d x_{1}=-x_{2} /\left(x_{1}^{2}+x_{2}^{2}\right)$ and $\partial \vartheta / d x_{2}=x_{1} /\left(x_{1}^{2}+x_{2}^{2}\right)$.
From (2) we know that b and c must have opposite signs.

- for $x_{2}=0$ we have $\dot{\vartheta}=c>0$ for $b<0, c>0$ or $\dot{\vartheta}=c<0$ for $b>0, c<0$
- for $x_{2} \neq 0$ we have $\dot{\vartheta} \neq 0$ or $c x_{1}^{2}-b x_{2}^{2}+(d-a) x_{1} x_{2}=0$. From the latter follows

$$
c \frac{x_{1}^{2}}{x_{2}^{2}}-b+(d-a) \frac{x_{1}}{x_{2}}=0
$$

which means

$$
\begin{equation*}
\frac{x_{1}}{x_{2}}=\frac{a-d}{2 c} \pm \frac{1}{2 c} \sqrt{a^{2}+4 b c-2 a d+d^{2}} \tag{4}
\end{equation*}
$$

As we know from (3) that $a^{2}+4 b c-2 a d+d^{2}<0$ there is no real solution to (4) and therefore $\dot{\vartheta} \neq 0$ for $x_{2} \neq 0$.
Therefore when $b<0, c>0, a+d<0$ the trajectories spiral anti-clockwise into the origin and when $b>0, c<0, a+d<0$ the trajectories spiral clockwise into the origin.
2) We have

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}+x_{1}\left(3-x_{1}^{2}-x_{2}^{2}\right)\left(x_{1}^{4}+x_{2}^{4}+2 x_{1}^{2} x_{2}^{2}-1\right)^{2} \\
& \dot{x}_{2}=-x_{1}+x_{2}\left(3-x_{1}^{2}-x_{2}^{2}\right)\left(x_{1}^{4}+x_{2}^{4}+2 x_{1}^{2} x_{2}^{2}-1\right)^{2}
\end{aligned}
$$

i) With $x_{1}=r \cos \vartheta$ and $x_{2}=r \sin \vartheta$, we obtain

$$
\begin{align*}
& \dot{x}_{1}=\dot{r} \cos \vartheta-r \sin \vartheta \dot{\vartheta}=r \sin \vartheta+r \cos \vartheta\left(3-r^{2}\right)\left(r^{4}-1\right)^{2} \tag{5}\\
& \dot{x}_{2}=\dot{r} \sin \vartheta+r \cos \vartheta \dot{\vartheta}=-r \cos \vartheta+r \sin \vartheta\left(3-r^{2}\right)\left(r^{4}-1\right)^{2} \tag{6}
\end{align*}
$$

where we used $x_{1}^{2}+x_{2}^{2}=r^{2}$ and $x_{1}^{4}+x_{2}^{4}+2 x_{1}^{2} x_{2}^{2}=r^{4}$.
Computing (5) $\cos \vartheta+(6) \sin \vartheta$ gives

$$
\begin{equation*}
\dot{r}=r\left(3-r^{2}\right)\left(r^{4}-1\right)^{2} \tag{7}
\end{equation*}
$$

and $(6) \cos \vartheta-(5) \sin \vartheta$ yields

$$
\begin{equation*}
r \dot{\vartheta}=-r \quad \Rightarrow \quad \dot{\vartheta}=-1 \tag{8}
\end{equation*}
$$

Since $\dot{\vartheta} \neq 0$ for all time, the origin is the only fixed point.
ii) With (7) we compute \dot{r} at the inner and outer boundary of

$$
\mathcal{D}=\{(r, \vartheta): 1 / 2 \leq r \leq 2\}
$$

We find

$$
\begin{aligned}
& \dot{r}(r=1 / 2)=\frac{1}{2} \frac{11}{4}\left(-\frac{15}{16}\right)^{2}>0 \\
& \dot{r}(r=2)=2(-1) 15^{2}<0
\end{aligned}
$$

\Rightarrow trajectories which enter \mathcal{D} never leave it.
\Rightarrow It follows by the Poincaré-Bendixson theorem that there is at least one limit cycle in \mathcal{D}.
iii) We have

$$
\begin{array}{ll}
\dot{r}=0 & \text { for } r=0,1, \sqrt{3} \equiv \text { limit cycles } \\
\dot{r}>0 & \text { for } 0<r<1 \\
\dot{r}>0 & \text { for } 1<r<\sqrt{3} \\
\dot{r}<0 & \text { for } \sqrt{3}<r \\
\dot{\vartheta}=-1 & \equiv \text { clockwise direction }
\end{array}
$$

Assembling all this gives the following phase portrait.

$i v)$ The α and ω limit sets are

$$
L_{\alpha}(\vec{x})=\left\{\begin{array}{ll}
(0,0) & \text { for } r<1 \\
C_{1} & \text { for } 1 \leq r<\sqrt{3} \\
C_{\sqrt{3}} & \text { for } r=\sqrt{3} \\
\varnothing & \text { for } \sqrt{3}<r
\end{array} \quad L_{\omega}(\vec{x})= \begin{cases}(0,0) & \text { for } r=0 \\
C_{1} & \text { for } 0<r \leq 1 \\
C_{\sqrt{3}} & \text { for } 1<r\end{cases}\right.
$$

- C_{1} is semistable and $C_{\sqrt{3}}$ is stable.
- These findings are consistent with the conclusions drawn in $i i$), both limit cycles are in \mathcal{D}.
- Defining a domain

$$
\mathcal{D}^{\prime}=\{(r, \vartheta): \sqrt{3}-\varepsilon \leq r \leq \sqrt{3}+\varepsilon\}
$$

we can use the same arguments as in $i i$) to conclude that there is a limit cycle in \mathcal{D}^{\prime}.

- However, we can not define such an annular region around C_{1}, as for

$$
\mathcal{D}^{\prime \prime}=\{(r, \vartheta): 1-\varepsilon \leq r \leq 1+\varepsilon\}
$$

the trajectories will enter $\mathcal{D}^{\prime \prime}$ on the inner boundary and leave it at the outer boundary. Thus the Poincaré-Bendixson theorem can not be applied in this case.
v) Bendixson's criterium requires the region to be simply connected, which is not the case for $\hat{\mathcal{D}}$. Therefore the criterium can not be applied.
3) We have

$$
\begin{aligned}
& \dot{x}_{1}=x_{1} x_{2}^{2}-9 x_{1}-16 x_{2}^{3} \\
& \dot{x}_{2}=4 x_{1} x_{2}^{2}+2 x_{2} x_{1}^{2}
\end{aligned}
$$

i) Lyapunov stability theorem: Consider the system $\dot{\vec{x}}=\vec{X}(\vec{x})$ with a fixed point at the origin. If there exists a real valued function $V(\vec{x})$ in a neighbourhood $N(\vec{x}=0)$ such that:
a) the partial derivatives $\partial V / \partial x_{1}, \partial V / \partial x_{2}$ exist and are continuous
b) the function $V(\vec{x})$ is positive definite
c) $d V / d t$ is negative semi-definite (definite)
then the origin is a stable (asymptotically stable) fixed point.
Def.: A function V for which the conditions $i)$-iii) hold with iii) semi-definite is called weak Lyapunov function.
Def.: A function V for which the conditions i)-iii) hold with iii) definite is called strong Lyapunov function.
Verify the requirements a)-c) for $V\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+16 x_{2}^{2}$
a) Clearly the partial derivatives $\partial V / \partial x_{1}, \partial V / \partial x_{2}$ exist and are continuous.
b) $\because V(0,0)=0$ and $V\left(x_{1}, x_{2}\right)>0$ for $\left(x_{1}, x_{2}\right) \neq 0$
\Rightarrow the function $V\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+16 x_{2}^{2}$ is positive definite
c) Compute $d V / d t$:

$$
\begin{aligned}
\dot{V} & =\frac{\partial V}{\partial x_{1}} \dot{x}_{1}+\frac{\partial V}{\partial x_{2}} \dot{x}_{2} \\
& =8 x_{1}\left(x_{1} x_{2}^{2}-9 x_{1}-16 x_{2}^{3}\right)+32 x_{2}\left(4 x_{1} x_{2}^{2}+2 x_{2} x_{1}^{2}\right) \\
& =8 x_{1}^{2} x_{2}^{2}-72 x_{1}^{2}-128 x_{1} x_{2}^{3}+\underline{128 x_{1} x_{2}^{3}}+64 x_{2}^{2} x_{1}^{2} \\
& =-8 x_{1}^{2}\left[9-x_{2}^{2}(1+8)\right] \\
& =-72 x_{1}^{2}\left(1-x_{2}^{2}\right)
\end{aligned}
$$

$\Rightarrow \dot{V}=0$ for $\left(0, x_{2}\right)$
$\Rightarrow \dot{V} \leq 0$ for $\left|x_{2}\right|<1$
\Rightarrow is negative semi-definite
$\Rightarrow V$ is a weak Lyapunov function
\Rightarrow by the Lyapunov stability theorem follows that the origin is a stable fixed point.
ii) For $\left|x_{2}\right|<1$ all points inside the level curve of $V\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+16 x_{2}^{2}$ will be dragged to the origin.

$$
\Rightarrow 4 x_{1}^{2}+16 x_{2}^{2}<16 \quad \Rightarrow \frac{x_{1}^{2}}{4}+x_{2}^{2}<1
$$

\Rightarrow the length of the minor is 2 and the length of the major is 4.
iii) Corollary: Let $V(\vec{x}(t))$ be a weak Lyapunov function for the system $\dot{\vec{x}}=\vec{X}(\vec{x})$ in a neighbourhood of an isolated fixed point $\vec{x}_{f}=(0,0)$. Then if $\dot{V} \neq 0$ on a trajectory, except for the fixed point, the origin is asymptotically stable.
For $\left(0, x_{2}\right)$ the dynamical system reduces to $\dot{x}_{1}=-16 x_{2}^{3}$ and $\dot{x}_{2}=0$.
This means the line $\left(0, x_{2}\right)$ is not a trajectory and therefore it follows from the corollary that the origin is asymptotically stable.

