

Dynamical Systems II

Coursework 2

Hand in the complete solutions to all three questions in the general office (room C123). Each question carries 20 marks.

DEADLINE: Tuesday 09/12/2008 at 16:00

1) *i*) Consider the dynamical system

$$\dot{x}_1 = 7x_2$$

 $\dot{x}_2 = -(x_1^2 - \lambda)x_2 - 7x_1 - 2x_1^3$

with $\lambda \in \mathbb{R}$ being a bifurcation parameter. Use the stability index

$$\begin{split} I &= \omega \left(Y_{111}^1 + Y_{122}^1 + Y_{112}^2 + Y_{222}^2 \right) + Y_{11}^1 Y_{11}^2 - Y_{11}^1 Y_{12}^1 + Y_{11}^2 Y_{12}^2 \\ &+ Y_{22}^2 Y_{12}^2 - Y_{22}^1 Y_{12}^1 - Y_{22}^1 Y_{22}^2 \end{split}$$

to argue that the origin is asymptotically stable for $\lambda = 0$. As in the lecture we abbreviated $Y_{jk}^i = \partial^2 Y_i / \partial y_j \partial y_k$ and $Y_{jkl}^i = \partial^2 Y_i / \partial y_j \partial y_k \partial y_l$.

- ii) Prove that the system possesses a Hopf bifurcation for $\lambda = 0$.
- *iii*) For the following system

$$\dot{r} = \lambda r (r - 2\lambda)^2$$
 and $\dot{\vartheta} = -1$

sketch the phase portrait for positive λ and determine the α and ω limit sets. Sketch the bifurcation diagram in the (r, λ) -plane with $\lambda \in \mathbb{R}$ being the bifurcation parameter. Decide which type of bifurcation occurs at the point $(r, \lambda) = (0, 0)$.

2) i) Exploit the fact that the following system

$$H(x_1, x_2) = \frac{1}{2}x_2^2 + ge^{-x_1}\cos x_1 \qquad g \in \mathbb{R}$$

is a potential system to find and classify all its fixed points.

- ii) Taking the constant g = 1/2, determine the separatices for the system and draw a phase portrait for $x_1 \in [-5, 5]$.
- *iii*) Given the initial condition $x_1 = 0$, $x_2 = 1/2$ compute the period T for the potential system

$$H(x_1, x_2) = \frac{1}{2}x_2^2 + \frac{1}{8}x_1^8.$$

Hint: You may use the integral $\int_0^1 dx / \sqrt{1-x^8} = \sqrt{\pi} \Gamma(9/8) / \Gamma(5/8)$.

3) Consider the following difference equation

$$x_{n+1} = F(x_n) = \lambda x_n (4 - x_n) \qquad \text{for } \lambda \in \mathbb{R}^+.$$

 λ is taken to be the bifurcation parameter.

- i) Depending on the values of λ , determine the nature of the fixed points and their stability.
- ii) State the condition which determines the existence of a 2-cycle. Show that 2-cycles for the above system are determined by the solutions of the equation

$$x^2\lambda^2 - 4x\lambda^2 - x\lambda + 4\lambda + 1 = 0.$$

Compute the solution of this equation and use it to argue that the existence of a 2-cycle requires $\lambda \geq 3/4$.

iii) Determine the domain of stability for the 2-cycle and sketch the corresponding bifurcation diagram.