Dynamical Systems II

Coursework 2

Hand in the complete solutions to all four questions in the general office (room C123).

DEAdLINE: Thursday 10/12/2009 at 14:00

1) Consider the one dimensional dynamical system of the form

$$
\dot{x}=x^{3}+\alpha x^{2}+\beta x \quad \text { with } \alpha, \beta \in \mathbb{R} .
$$

Find the fixed points for the system. For $\alpha=0$ find the pitchfork bifurcation point for the above system. Show that when $\alpha \neq 0$ this point transforms into a transcritical bifurcation point. Find the turning point of the system as a function of α.
2) i) Prove that the van der Pol differential equation

$$
\ddot{x}+\lambda\left(x^{2}-1\right) \dot{x}+x=0
$$

possesses a Hopf bifurcation.
ii) For the initial conditions $x=0$ and $\dot{x}=1$ choose two values of λ which lead to qualitatively different behaviour. Produce sketches for the corresponding phase portraits by using the wolfram alpha web site:
http://www.wolframalpha.com/input/?i=dynamical+systems=.
(The link is also available from the course web site.)
3) i) Use the fact that the following system is a potential system

$$
H\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{2}^{2}+\kappa e^{-x_{1}} \sin x_{1} \quad \kappa \in \mathbb{R}
$$

to find and classify all its fixed points.
ii) Sketch the phase portrait.
iii) Given the initial condition $x_{1}=2^{3 / 4}, x_{2}=2$ compute the period T for the potential system

$$
H\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{2}^{2}+\frac{1}{4} x_{1}^{4} .
$$

Hint: You may use the integral $\int_{0}^{1} d x / \sqrt{1-x^{4}}=\sqrt{\pi} \Gamma(5 / 4) / \Gamma(3 / 4)$.
4) Consider the harmonic oscillator in two dimensions described by the Hamiltonian [10 marks]

$$
H\left(x_{1}, x_{2}, p_{1}, p_{2}\right)=\frac{1}{2 m}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{k}{2}\left(x_{1}^{2}+x_{2}^{2}\right)
$$

i) Derive the equations of motion.
ii) Use the definition for the Poisson bracket to show that the two quantities

$$
\begin{aligned}
L\left(x_{1}, x_{2}, p_{1}, p_{2}\right) & =x_{1} p_{2}-x_{2} p_{1} \\
K\left(x_{1}, x_{2}, p_{1}, p_{2}\right) & =\frac{1}{2 m}\left(p_{1}^{2}-p_{2}^{2}\right)+\frac{k}{2}\left(x_{1}^{2}-x_{2}^{2}\right)
\end{aligned}
$$

are conserved in time, i.e. $\dot{L}=\dot{K}=0$.
iii) Employ the Jacobi-Poisson theorem to construct a new conserved quantity from L and K.
$i v)$ Is the conserved quantity constructed in $i i i$) independent of the previous ones?

