Dynamical Systems II

Coursework 2

Hand in the complete solutions to all three questions in the SEMS general office (C108).

DEADLINE: Thursday 09/12/2010 at 16:00

1. (i) Describe what is meant by bifurcation theory, a bifurcation and a bifurcation diagram. Consider the one dimensional system

$$
\dot{x}=x^{3}+\gamma x^{2}-\lambda x \quad \text { with } \gamma, \lambda \in \mathbb{R} .
$$

Find the fixed points for the system. For $\gamma=0$ find the pitchfork deformation point for the above system. Show that when $\gamma \neq 0$ this point transforms into a transcritical bifurcation point. Find the turning point of the system as a function of γ.
(ii) Consider the dynamical system

$$
\begin{aligned}
& \dot{x}_{1}=9 x_{2}+3 x_{1}^{2} \\
& \dot{x}_{2}=\lambda x_{2}-2 x_{1}^{2} x_{2}-9 x_{1}-2 x_{1}^{3}+\alpha x_{1}^{2}
\end{aligned}
$$

with $\lambda \in \mathbb{R}$ being a bifurcation parameter and constant $\alpha \in \mathbb{R}$. For which values of α is the origin an asymptotically stable fixed point?
Hint: You may use the stability index

$$
\begin{aligned}
I= & \omega\left(Y_{111}^{1}+Y_{122}^{1}+Y_{112}^{2}+Y_{222}^{2}\right)+Y_{11}^{1} Y_{11}^{2}-Y_{11}^{1} Y_{12}^{1}+Y_{11}^{2} Y_{12}^{2} \\
& +Y_{22}^{2} Y_{12}^{2}-Y_{22}^{1} Y_{12}^{1}-Y_{22}^{1} Y_{22}^{2}
\end{aligned}
$$

where

$$
Y_{j k}^{i}=\left.\frac{\partial^{2} Y_{i}}{\partial y_{j} \partial y_{k}}\right|_{(0,0)} \quad \text { and } \quad Y_{j k l}^{i}=\left.\frac{\partial^{3} Y_{i}}{\partial y_{j} \partial y_{k} \partial y_{l}}\right|_{(0,0)} .
$$

(iii) State the Hopf bifurcation theorem and use it to decide whether the system in (ii) possesses a Hopf bifurcation point for $\lambda=0$ when $\alpha=2$ and $\alpha=4$.
2. (i) What is meant by a Hamiltonian system in two dimensions, equations of motion and an autonomous system?
(ii) Provide a criterium that can be used to decide whether a system is Hamiltonian or not. Employ the criterium to determine the value of μ such that the system

$$
\begin{aligned}
& \dot{x}_{1}=3 x_{1}^{2} x_{2}^{2}+2 x_{1}+5 x_{2} \\
& \dot{x}_{2}=-\mu x_{1}^{2} x_{2}^{3}-2 x_{2}+\sin \left(x_{1}^{5}\right)
\end{aligned}
$$

becomes a Hamiltonian system.
(iii) Provide a definition for a potential system. Derive the Hamiltonian function for the dynamical system

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-2 x_{1}+\frac{20 x_{1}}{1+x_{1}^{2}}
\end{aligned}
$$

and confirm that it is a potential system. Fix the potential in such way that its value at zero is zero.
(iv) Compute all fixed points of the system in (iii) and determine their nature by making use of the fact that the system is a potential system.
(v) Sketch the potential for the system in (iii) and compute the equation for the separatrices by making use of the fact that the Hamiltonian is conserved along a trajectory. Draw the phase portrait for the system. Include the separatrices and some representative trajectories. Include the direction of time on the trajectories and provide a reasoning for your choices. Explain in which areas of your diagram the motion is bounded.
3. Consider the following difference equation

$$
x_{n+1}=F\left(x_{n}\right)=8 \lambda x_{n}-4 \lambda x_{n}^{2} \quad \text { for } \lambda \in \mathbb{R}^{+}
$$

λ is taken to be the bifurcation parameter.
(i) Depending on the values of λ, determine the nature of the fixed points and their stability.
(ii) State the condition which determines the existence of a 2 -cycle. Show that 2 -cycles for the above system are governed by the solutions of the equation

$$
1+8 \lambda-4 x \lambda-32 x \lambda^{2}+16 x^{2} \lambda^{2}=0
$$

Compute the solution of this equation and use it to argue that the existence of a 2 -cycle requires $\lambda \geq 3 / 8$.
(iii) Determine the domain of stability for the 2-cycle.

