Dynamical Systems Exercises 1

1) Determine the fixed points of the following dynamical systems in the plane:
i)

$$
\dot{x}_{1}=\alpha x_{1}-\beta x_{1} x_{2} \quad \dot{x}_{2}=-\gamma x_{2}+\delta x_{1} x_{2} \quad \text { for } \alpha, \beta, \gamma, \delta \in \mathbb{R}^{+}
$$

ii)

$$
\dot{x}_{1}=x_{2}+5 \quad \dot{x}_{2}=\cos \left(x_{1}\right)
$$

iii)

$$
\dot{x}_{1}=e^{x_{1}}+\alpha x_{2}+5 x_{1}-\beta \quad \dot{x}_{2}=x_{1}^{3} \quad \text { for } \alpha, \beta \in \mathbb{R}
$$

iv)

$$
\dot{x}_{1}=2 x_{2}-x_{2}^{2}-2 x_{1} x_{2} \quad \dot{x}_{2}=2 x_{1}-x_{1}^{2}-2 x_{1} x_{2}
$$

2) Bring the coefficient matrix for each of the following linear systems into the Jordan form. Determine the nature of their fixed points thereafter.
i)

$$
\dot{x}_{1}=x_{2} \quad \dot{x}_{2}=-2 x_{1}+3 x_{2}
$$

ii)

$$
\dot{x}_{1}=-2 x_{1}+2 x_{2} \quad \dot{x}_{2}=-2 x_{1}+3 x_{2}
$$

iii)

$$
\dot{x}_{1}=x_{1}-x_{2} \quad \dot{x}_{2}=x_{1}+3 x_{2}
$$

3) Near the fixed points draw the local phase portraits of the following nonlinear systems. Exploit the fact that the isoclines are trajectories which can be drawn easily. Does the linearization theorem apply?
i)

$$
\begin{aligned}
& \dot{x}_{1}=12 x_{1}-3 x_{1}^{2}-4 x_{1} x_{2} \\
& \dot{x}_{2}=4 x_{2}-x_{1}^{2}-2 x_{1} x_{2} .
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \dot{x}_{1}=-x_{2}^{7} \\
& \dot{x}_{2}=x_{1}+x_{2}^{4} .
\end{aligned}
$$

