
MA3608 , Andreas Fring, Dynamical Systems II

Dynamical Systems II

Solutions and marking scheme for coursework 1

������������: Each question carries 20 marks.

1. (i) Defining 2

x1 = x and x2 = ẋ,

we obtain

ẋ1 = ẋ = x2,

ẋ2 = ẍ = −x2 − µx31 − νx52.

(ii) The fixed point �xf = (0, 0) results from 1

x2 = 0,

−x2 − µx31 − νx52 = 0.

Linearization theorem: Consider a nonlinear system which possesses a simple 2

linearization at some fixed point. Then in a neighbourhood of the fixed point

the phase portraits of the linear system and its linearization are qualitatively

equivalent, if the eigenvalues of the Jacobian matrix have a nonzero real part,

i.e. the linearized system is not a centre.

We compute the Jacobian for the above system at the fixed point:

A(�xf ) =

(
0 1

0 −1

)

⇒ detA(�xf ) = 0⇒ non-simple linearization

The linearization theorem can not be applied since the system is non-simple. 3

(iii) Lyapunov stability theorem: Consider the system �̇x = �F (�x) with a fixed

point at the origin. If there exists a real valued function V (�x) in a neighbourhood

N(�x = 0) such that:

i) the partial derivatives ∂V/∂x1, ∂V/∂x2 exist and are continuous,

ii) the function V (�x) is positive definite,

iii) dV/dt is negative semi-definite (definite),
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then the origin is a stable (asymptotically stable) fixed point.

Verify conditions: 5

i) the partial derivatives ∂V/∂x1 = 4αx
3
1
, ∂V/∂x2 = 4x2 exist and are continu-

ous,

ii) the function V (�x) is positive definite, i.e. V (�0) = 0 and V (�x) > 0∀�x �= �0,
iii) dV/dt should be negative semi-definite for V (�x) to be a weak Lyapunov

function:

dV

dt
=
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= 4αx31x2 + 4x2(−x2 − µx31 − νx52)
= (4α− 4µ)x31x2 − 4x22 − 4νx62

⇒ dV/dt should be negative semi-definite for α = µ and ν ≥ 0.
(iv) The partial derivatives ∂V1/∂x1 and ∂V1/∂x2 exist and are continuous. V1(�x) 3

is positive definite. But

dV

dt
=
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= 2x1x2 + 2x2(−x2 − x31)

does not lead to a negative semi-definite function. Therefore V1 is not a Lya-

punov function.

V2(�x) is not positive definite. Therefore V2 is not a Lyapunov function.

(v) Corollary: Let V [�x(t)] be a weak Lyapunov function for the system �̇x = �F (�x) 4

in a neighbourhood of the isolated fixed point �xf = (0, 0). Then if V̇ �= 0 on any

trajectory, except for the fixed point, the origin is asymptotically stable.

- We have dV/dt = 0 for �x = (x1, 0).

- On this line we have ẋ1 = 0 and ẋ2 = −µx31, which means the line �x = (x1, 0)

is not a trajectory.

- Therefore �x = (0, 0) is asymptotically stable.
∑
= 20

2. We have

ẋ1 = x2 + x1(x
2

1 + x
2

2 − 5)(1− x41 − x42 − 2x21x22)
ẋ2 = −x1 + x2(x21 + x22 − 5)(1− x41 − x42 − 2x21x22)

(i) With x1 = r cosϑ and x2 = r sinϑ we obtain 4

ẋ1 = ṙ cosϑ− r sinϑϑ̇ = r sinϑ+ r cosϑ(r2 − 5)(1− r4) (1)

ẋ2 = ṙ sinϑ+ r cosϑϑ̇ = −r cosϑ+ r sinϑ(r2 − 5)(1− r4) (2)

where x2
1
+ x2

2
= r2. Computing (1) × cosϑ + (2) × sinϑ gives

ṙ = r(r2 − 5)(1− r4). (3)

— 2 —
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Next we compute (1) × sinϑ - (2) × cosϑ:

−rϑ̇ = r

Dividing by r gives

ϑ̇ = −1. (4)

Since ϑ̇ �= 0 the origin is the only fixed point. 1

(ii) Poincaré-Bendixson theorem: Let ϕt be a flow for the system �̇x = �F (�x) 2

and let D be a closed, bounded and connected set D ∈ R2, such that ϕt(D) ⊂ D
for all time. Furthermore D does not contain any fixed point. Then there exists

at least one limit cycle in D.

For r = 2 we compute 3

ṙ(2) = 2(4− 5)(1− 16) = 30 > 0,

and for r = 3 we compute

ṙ(3) = 2(9− 5)(1− 81) = −960 < 0.

⇒ trajectories which enter the region

D = {(r, ϑ) : 2 ≤ r ≤ 3}

can never leave it.

⇒ Since there is no fixed point in D, see (i), we can employ the Poincaré-

Bendixson theorem to deduce that there is at least one limit cycle in D.
(iii) Equations (3) and (4) give the diagram: 2

(iv) Def.: The ω-limit set (or positive limit set) Lω(�x) of a point �x contains those 1

points which are approached by the trajectory through �x as t→∞, that is

Lω(�x) = {�y ∈ Rn : ∃ a sequence of times tn with tn →∞,

such that lim
n→∞

ϕtn(�x) = �y
}

— 3 —
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Def.: The α-limit set (or negative limit set) Lα(�x) of a point �x contains those

points which are approached by the trajectory through �x as t→−∞, that is

Lα(�x) = {�y ∈ Rn : ∃ a sequence of times tn with tn → −∞,

such that lim
n→∞

ϕtn(�x) = �y
}

Accordingly we compute for (3) and (4) 3

Lα(�x) =






0 for r = 0

C1 for 0 < r <
√
5

C√
5

for r =
√
5

∅
√
5 < r

Lω(�x) =






0 for 0 ≤ r < 1
C1 for r = 1

C√
5

for 1 < r

Def.: A closed orbit φ is a limit cycle if φ is a subset of an α or ω-limit set 2

for some point �x /∈ φ.
We have ṙ = 0 for r = 0,

√
5, 1, which means we have a limit cycle with radius

r = 1 : C1 and one with radius r =
√
5 : C√

5
.

Def.: A limit cycle φ is a called a stable (unstable) limit cycle, if φ = Lω(�x)

(φ = Lα(�x)) for all �x in some neighbourhood of the limit cycle.

Def.: A limit cycle φ is a called a semi-stable limit cycle, if it is a stable limit

cycle for points on one side and an unstable limit cycle for point on the other

side.

Therefore C1 is unstable and C√
5
is stable. The limit cycle C√

5
is the one

identified in (ii) since C√
5
⊂ D.

(v) Bendixson’s criterium: Let D be a simply connected region of the phase 2

plane in which the function �F (�x) of the system �̇x = �F (�x) has the property that

its divergence is of constant sign, i.e.

div �F =
∂F1
∂x1

+
∂F2
∂x2

< 0 or div �F =
∂F1
∂x1

+
∂F2
∂x2

> 0.

Then the system posesses no closed orbit contained entirely in D.

D̂ is not a simply connected region and therefore we can not apply Bendixson’s

criterium to decide whether it contains limit cycles or not.
∑
= 20
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