Dynamical Systems II

Solutions and marking scheme for coursework 2

instructions: Each question carries 20 marks.

1) i) We have the following corollary: Suppose that for the system $\dot{\vec{x}}=\vec{X}(\vec{x})$ we have transformed the linearized system $\dot{\vec{x}}=A \vec{x}$ with the help of $\vec{x}=U \vec{y}$ into the Jordan normal form

$$
\dot{\vec{y}}=U^{-1} A U \vec{y}=J \vec{y}=\left(\begin{array}{cc}
0 & \omega \tag{1}\\
-\omega & 0
\end{array}\right),
$$

where $\vec{x}=U \vec{y}, \dot{\vec{y}}=\vec{Y}(\vec{y})$. Then if the stability index
$I=\omega\left(Y_{111}^{1}+Y_{122}^{1}+Y_{112}^{2}+Y_{222}^{2}\right)+Y_{11}^{1}\left(Y_{11}^{2}-Y_{12}^{1}\right)+Y_{22}^{2}\left(Y_{12}^{2}-Y_{22}^{1}\right)+Y_{11}^{2} Y_{12}^{2}-Y_{22}^{1} Y_{12}^{1}$
computed from (1) and $\dot{\vec{y}}=\vec{Y}(\vec{y})$ is negative, the origin is asymptotically stable. We compute the Jacobian for the system

$$
\dot{x}_{1}=7 x_{2} \quad \dot{x}_{2}=-\left(x_{1}^{2}-\lambda\right) x_{2}-7 x_{1}-2 x_{1}^{3}
$$

to

$$
A=\left(\begin{array}{cc}
0 & 7 \\
-7 & 0
\end{array}\right)
$$

Note this is already in Jordan normal form, such that $A=J$ and $\vec{X}=\vec{Y}$. Therefore $\omega=7$. The only nonvanishing term in I is $Y_{112}^{2}=-2$. This means

$$
I=\omega Y_{112}^{2}=-14
$$

As I is negative it follows that the origin is asymptotically stable.
ii) Hopf bifurcation theorem: Let $(0,0, \lambda)$ with $\lambda \in \mathbb{R}$ be a fixed point of the system

$$
\begin{aligned}
& \dot{x}_{1}=F\left(x_{1}, x_{2}, \lambda\right) \\
& \dot{x}_{2}=G\left(x_{1}, x_{2}, \lambda\right) .
\end{aligned}
$$

If
i) The eigenvalues $e_{1}(\lambda)$ and $e_{2}(\lambda)$ of the linearized system are purely imaginary for some value $\lambda=\tilde{\lambda}$, i.e. $e_{1}(\lambda) \in i \mathbb{R}$ and $e_{2}(\lambda) \in i \mathbb{R}$.
ii) The real part of the eigenvalues $\operatorname{Re}\left(e_{1 / 2}(\lambda)\right)$ satisfies

$$
\left.\frac{d}{d \lambda} \operatorname{Re}\left(e_{1 / 2}(\lambda)\right)\right|_{\lambda=\tilde{\lambda}}>0
$$

iii) The origin is asymptotically stable for $\lambda=\tilde{\lambda}$.
then
a) $\lambda=\tilde{\lambda}$ is a bifurcation point of the system.
b) For $\lambda \in\left(\lambda_{1}, \tilde{\lambda}\right)$ with some $\lambda_{1}<\tilde{\lambda}$ the origin is a stable focus.
c) For $\lambda \in\left(\tilde{\lambda}, \lambda_{2}\right)$ with some $\lambda_{2}>\tilde{\lambda}$ the origin is an unstable focus surrounded by a stable limit cycle whose size increases with λ. State the Hopf bifurcation theorem and use it to prove that the system possesses a Hopf bifurcation for $\lambda=0$.
The Jacobian matrix for $\lambda \neq 0$ is

$$
A=\left(\begin{array}{cc}
0 & 7 \\
-7 & \lambda
\end{array}\right)
$$

with eigenvalues $e_{ \pm}=\lambda / 2 \pm \sqrt{\lambda^{2}-196}$.
i) for $\lambda=0$ the eigenvales are purely imaginary $e_{ \pm}= \pm i 7$.
ii) we compute

$$
\left.\frac{d}{d \lambda} \operatorname{Re}\left(e_{1 / 2}(\lambda)\right)\right|_{\lambda=\tilde{\lambda}=0}=\frac{1}{2}>0
$$

iii) from part i) of the question we know that the origin is asymptotically stable.

Therefore the Hopf bifurcation theorem applies.
iii) We have

$$
\dot{r}=0 \quad \text { for } r=0,2 \lambda \quad \text { and } \quad \dot{r}>0 \quad \text { for } r \neq 0,2 \lambda
$$

Therefore

$$
L_{\alpha}(\vec{x})=\left\{\begin{array}{ll}
0 & \text { for } 0 \leq r<2 \lambda \\
C_{2 \lambda} & \text { for } r \neq 2 \lambda
\end{array} \quad L_{\omega}(\vec{x})= \begin{cases}0 & \text { for } r=0 \\
C_{2 \lambda} & \text { for } 0<r \leq 2 \lambda \\
\varnothing & \text { for } r>2 \lambda\end{cases}\right.
$$

Phase portrait:

The fixed points are at $r=0$ and $r=2 \lambda$. With $F(r, \lambda)$ follows

$$
\begin{array}{ll}
\frac{\partial F}{\partial r}=4 \lambda^{3}-8 r \lambda^{2}+3 r^{2} \lambda=0 & \Rightarrow \lambda=0 \\
\frac{\partial F}{\partial \lambda}=r^{3}-8 r^{2} \lambda+12 r \lambda^{2}=0 & \Rightarrow r=0
\end{array}
$$

which means there is a transcritical bifurcation point at $(0,0)$, which follows from the definition: Let $\left(x_{0}, \lambda_{0}\right)$ be a fixed point for the system $\dot{x}=F(x, \lambda)$. If $\partial F /\left.\partial \lambda\right|_{\left(x_{0}, \lambda_{0}\right)}=0$ and $\partial F /\left.\partial x\right|_{\left(x_{0}, \lambda_{0}\right)}=0$ and if through $\left(x_{0}, \lambda_{0}\right)$ pass two and only two braches of the equilibrium curve which have both distinct tangents at $\left(x_{0}, \lambda_{0}\right)$, then $\left(x_{0}, \lambda_{0}\right)$ is called a transcritical bifurcation.
Bifurcation diagram:

$$
\begin{aligned}
\dot{r}>0 & \text { for } r>0 \wedge \lambda>0 \\
& v \quad r<0 \quad \lambda<0 \\
\dot{r}<0 & \text { for } \quad r>0 \wedge \lambda<0 \\
& v \quad r<0 \Lambda \lambda>0
\end{aligned}
$$

$$
\sum=20
$$

2) i) We compute

$$
\begin{aligned}
V(x) & =g e^{-x} \cos x \\
V^{\prime}(x) & =-g e^{-x}(\sin x+\cos x) \\
V^{\prime \prime}(x) & =2 g e^{-x} \sin x
\end{aligned}
$$

The stationary points are obtained from $V^{\prime}(x)=0$. Therefore $\sin x+\cos x=$ $\sqrt{2} \sin (\pi / 4+x)=0$. This means the stationary points are at

$$
x^{(n)}=-\frac{\pi}{4}+n \pi
$$

Next we compute

$$
V^{\prime \prime}\left(x^{(n)}\right)=2 g e^{\frac{\pi}{4}-n \pi} \sin \left(-\frac{\pi}{4}+n \pi\right)=\sqrt{2}(-1)^{n+1} g e^{\frac{\pi}{4}-n \pi}
$$

for $g \in \mathbb{R}^{+}, n$ even: $V^{\prime \prime}\left(x^{(n)}\right)<0 \Rightarrow$ maximum at $x^{(n)} \Rightarrow$ saddle point at $\left(x^{(n)}, 0\right)$, for $g \in \mathbb{R}^{+}, n$ odd: $V^{\prime \prime}\left(x^{(n)}\right)>0 \Rightarrow$ minimum at $x^{(n)} \Rightarrow$ centre at $\left(x^{(n)}, 0\right)$, for $g \in \mathbb{R}^{-}, n$ even: $V^{\prime \prime}\left(x^{(n)}\right)>0 \Rightarrow$ minimum at $x^{(n)} \Rightarrow$ centre at $\left(x^{(n)}, 0\right)$, for $g \in \mathbb{R}^{-}, n$ odd: $V^{\prime \prime}\left(x^{(n)}\right)<0 \Rightarrow$ maximum at $x^{(n)} \Rightarrow$ saddle point at $\left(x^{(n)}, 0\right)$.
ii) The separatrix passes through the saddle point, i.e.

$$
H(-\pi / 4,0)=1 / 2 e^{\pi / 4} \cos (-\pi / 4)=E_{\text {saddle }}
$$

Therefore the equation of the separatrix results from

$$
E_{\text {saddle }}=\frac{1}{2} x_{2}^{2}+\frac{1}{2} e^{-x_{1}} \cos x_{1}
$$

that is

$$
\begin{aligned}
x_{2} & = \pm 2 \sqrt{E_{\text {saddle }}-\frac{1}{2} e^{-x_{1}} \cos x_{1}} \\
& = \pm \sqrt{\frac{1}{\sqrt{2}} e^{\pi / 4}-e^{-x_{1}} \cos x_{1}}
\end{aligned}
$$

iii) First compute the energy using the initial conditions

$$
H(0,1 / 2)=\frac{1}{2}\left(\frac{1}{2}\right)^{2}=\frac{1}{8}=E
$$

The turning points result from $x_{2}=0$

$$
E=\frac{1}{8}=H\left(x_{t}, 0\right)=\frac{1}{8} x_{t}^{8} \quad \Rightarrow x_{t}= \pm 1
$$

The period is then computed from

$$
\begin{aligned}
T & =2 \int_{\alpha}^{\beta} \frac{d x}{\sqrt{2[E-V(x)]}}=2 \int_{-1}^{1} \frac{d x}{\sqrt{2\left[1 / 8-x^{8} / 8\right]}} \\
& =8 \int_{0}^{1} \frac{d x}{\sqrt{1-x^{8}}}=8 \sqrt{\pi} \Gamma(9 / 8) / \Gamma(5 / 8)
\end{aligned}
$$

3) We have

$$
x_{n+1}=F\left(x_{n}\right)=\lambda x_{n}\left(4-x_{n}\right) \quad \text { for } \lambda \in \mathbb{R}^{+} .
$$

i) In order to find the fixed points we need to solve

$$
x=F(x)=\lambda x(4-x) \quad \Leftrightarrow \quad x\left(x+\frac{1}{\lambda}-4\right)=0
$$

Therefore, the fixed points are

$$
x_{f}^{(1)}=0 \quad \text { and } \quad x_{f}^{(2)}=4-\frac{1}{\lambda} .
$$

A fixed point is stable iff $\left|F^{\prime}(x)\right|<1$.

$$
\Rightarrow \quad F^{\prime}(x)=4 \lambda-2 \lambda x
$$

$\Rightarrow\left|F^{\prime}\left(x_{f}^{(1)}\right)\right|=|4 \lambda|>1$ for $\lambda>1 / 4 . \Rightarrow x_{f}^{(1)}$ is unstable for $\lambda>1 / 4$.
$\Rightarrow\left|F^{\prime}\left(x_{f}^{(1)}\right)\right|=|4 \lambda-8 \lambda+2|<1$ for $-1<2-4 \lambda<1 \Rightarrow 1 / 4<\lambda<3 / 4$
$\Rightarrow x_{f}^{(2)}$ is stable for $1 / 4<\lambda<3 / 4$.
ii) A two cycle exits iff $F(F(x))=x$

$$
\begin{aligned}
& \Rightarrow x=4 \lambda F(x)-\lambda F^{2}(x) \\
& \Rightarrow x=16 x \lambda^{2}-4 x^{2} \lambda^{2}-16 x^{2} \lambda^{3}+8 x^{3} \lambda^{3}-x^{4} \lambda^{3}
\end{aligned}
$$

We can factorize this equation, because the fixed point is a solution of $F(F(x))=$ x. By polynomial division (or verify by multiplication)

$$
[F(x)-x]\left(x^{2} \lambda^{2}-4 x \lambda^{2}-x \lambda+4 \lambda+1\right)=16 x \lambda^{2}-x-\left(4 \lambda^{2}+16 \lambda^{3}\right) x^{2}+8 x^{3} \lambda^{3}-x^{4} \lambda^{3}
$$

This means the existence of the two cycle is governed by the equations

$$
x^{2} \lambda^{2}-4 x \lambda^{2}-x \lambda+4 \lambda+1=0
$$

We solve this by

$$
x_{ \pm}=\frac{4 \lambda^{2}+\lambda \pm \lambda \sqrt{16 \lambda^{2}-8 \lambda-3}}{2 \lambda^{2}}
$$

Thus $x_{ \pm} \in \mathbb{R}$ iff $16 \lambda^{2}-8 \lambda-3 \geq 0$. Therefore the existence of the two cycle requires

$$
(1+4 \lambda)(4 \lambda-3) \geq 0 \quad \Rightarrow \quad \lambda \geq 3 / 4
$$

Compute the solution of this equation and use it to argue that the existence of a 2-cycle requires $\lambda \geq 3 / 4$.
iii) A two cycle is stable iff for $G(x)=F(F(x))$

$$
\left|G^{\prime}(x)\right|<1 \quad \Leftrightarrow \quad\left|F\left(x_{+}\right) F\left(x_{-}\right)\right|<1
$$

Therefore

$$
\begin{aligned}
\left|F\left(x_{+}\right) F\left(x_{-}\right)\right| & =\left|\left(4 \lambda-2 \lambda x_{+}\right)\left(4 \lambda-2 \lambda x_{-}\right)\right| \\
& =\left|\left(-1+\sqrt{16 \lambda^{2}-8 \lambda-3}\right)\left(-1-\sqrt{16 \lambda^{2}-8 \lambda-3}\right)\right| \\
& =\left|1-\left(16 \lambda^{2}-8 \lambda-3\right)\right| \\
& =\left|16 \lambda^{2}-8 \lambda-4\right|<1
\end{aligned}
$$

such that

$$
\begin{array}{rll}
16 \lambda^{2}-8 \lambda-5<0 & \wedge & 16 \lambda^{2}-8 \lambda-3>0 \\
{\left[\lambda-\frac{1}{4}(1-\sqrt{6})\right]\left[\lambda-\frac{1}{4}(1+\sqrt{6})\right]<0} & \wedge & \left(\lambda+\frac{1}{4}\right)\left(\lambda-\frac{3}{4}\right)>0 \\
\lambda<\frac{1}{4}(1+\sqrt{6}) & \wedge & \lambda>\frac{3}{4}
\end{array}
$$

\Rightarrow The domain of stability for the two cycle is

$$
\frac{3}{4}<\lambda<\frac{1}{4}(1+\sqrt{6})
$$

The bifurcation diagram is

