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Dynamical Systems II

Solutions and marking scheme for coursework 2

INSTRUCTIONS: Fach question carries 20 marks.

1) i) We have the following corollary: Suppose that for the system = X(&) we
have transformed the linearized system & = AZ with the help of £ = Uy into the

Jordan normal form

. 0

gzU—lAUg=J5=< ”>, (1)
—w 0

where & = Uy, = ?(g]) Then if the stability index

I=w (Y1111 + Yihy +Yia + Y2222)+Y111(Y121*5/112)+Y222(Y122*Y212)+Y121Y122*Y212Y112

computed from (1) and i = ?(g) is negative, the origin is asymptotically stable.

We compute the Jacobian for the system

33‘1 == 7:32 i‘g = *(l‘% — )\)1‘2 — 71‘1 — 2%‘?

A:<f7g).

Note this is already in Jordan normal form, such that A = J and X =Y.
Therefore w = 7. The only nonvanishing term in I is Y%, = —2. This means

to

As 1 is negative it follows that the origin is asymptotically stable.
i) Hopf bifurcation theorem: Let (0,0,\) with A € R be a fized point of the
system

{.El = F([L’l,wg,)\)
to = G(21, 32, \).

If
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i)

i) The eigenvalues e1(A) and ex(\) of the linearized system are purely imaginary
for some value A = ), i.e. e;(\) € iR and ex()\) € iR.

ii) The real part of the eigenvalues Re(e;/9())) satisfies

d
a Re(el/g()\)) o > 0.

iii) The origin is asymptotically stable for A = A
then

a) A = \is a bifurcation point of the system.
b) For A € (A, \) with some A\; < A the origin is a stable focus.

c) For A € (X, \p) with some Ay > X the origin is an unstable focus surrounded
by a stable limit cycle whose size increases with A. State the Hopf bifurca-
tion theorem and use it to prove that the system possesses a Hopf bifurcation

for A = 0.

The Jacobian matrix for A # 0 is

0 7

with eigenvalues ex = A/2 4 /A% — 196.
i) for A = 0 the eigenvales are purely imaginary e, = =+i7.
ii) we compute

1
==->0.

d
)| =

dA

iii) from part ) of the question we know that the origin is asymptotically stable.

Therefore the Hopf bifurcation theorem applies.

We have
r=0 forr=0,2A and >0 forr+#0,2\

Therefore
0 for 0 <r <2\ 0 for 7 =0
L, (%) = {C’ forr;éZ)\ L,(Z) =< Coy  for 0 <r <2A
2A o) for r > 2\

Phase portrait:
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b

The fixed points are at » = 0 and r = 2\. With F(r, \) follows

F

887:4)\38T)\2+3T2)\:O —A=0
OF 3 2 2

o =" 8rAd+12rA*=0 =r=0

which means there is a transcritical bifurcation point at (0,0), which follows
from the definition: Let (zo,Ao) be a fized point for the system & = F(x,\). If
OF /O (1, 00) = 0 and OF /0|y »,) = 0 and if through (x0, Ao) pass two and
only two braches of the equilibrium curve which have both distinct tangents at
(o, Ao), then (xg,Ag) is called a transcritical bifurcation.

Bifurcation diagram:

F20 4o rdo A)>o0

/T_f\-'lf";.l_‘ s FJG/‘F_AQEP
|

| f'ﬂﬂﬂf’ﬁ' reia ;
& ibdd 'f{f?“f;r <o fmr 0 A Aco
v

;;\;‘IF?J’LL{JJJ} v Ffeod ADdo

2) i) We compute

V(z) = ge " cosx
V'(z) = —ge *(sinx + cos x)
V"(z) = 2ge "sinw

The stationary points are obtained from V’(z) = 0. Therefore sinx + cosx =
V2sin(mr/4 4+ 2) = 0. This means the stationary points are at
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2™ = *% + n.

Next we compute
V" (2™) = 2geT " sin (—% + mr) = V/2(—1)"Hlgeinm,

for g € RT,n even: V" (z(") < 0 =maximum at 2" =saddle point at (2™, 0),

for g € RT,n odd: V”(2(™) > 0 =minimum at =™ =centre at (2(™,0),

for g € R™,n even: V" (z(™) > 0 =minimum at 2 =centre at (z(™,0),

for g € R™,n odd: V" (™) < 0 =maximum at 2™ =saddle point at (z(™,0).
i1) The separatrix passes through the saddle point, i.e.

H(—7/4,0) = 1/2¢™* cos(—m/4) = Esaddue
Therefore the equation of the separatrix results from

1 1 _
Foaddle = 530% + 56 1 cos zq

that is

1
Ty = :l:Q\/Esaddle — 5679”1 COS T1
1
=+ — e %1 cosxy

/4
\/56
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i71) First compute the energy using the initial conditions

1/1\% 1
H(0,1/2)== (=) =-=F
The turning points result from xo =0

1 1

The period is then computed from

T_9 s dzx _ 1 dx
a /a V2[E—V(z)] /_1\/2[1/8:178/8]

L de
_ 3 /0 s = SVAT(9/8)/T(5/5)

3) We have
Tnt1 = Fxn) = Axp(4 — xp) for A e RT.

i) In order to find the fixed points we need to solve

1
r=Fx)=Xx(4—2) & :l:(:c+x—4):()
Therefore, the fixed points are
1
xgcl) =0 and x§c2) =4 — %

A fixed point is stable iff |F'(z)| < 1.

= F'(z)=4\—2\x

= ‘F/(ac;l))‘ = 4N >1for A >1/4. = x;l) is unstable for A > 1/4.
= (F/(ng))( — 4N —8A+2 <lfor —1<2—4r<1=1/4<\<3/4

= :rgg) is stable for 1/4 < \ < 3/4.
1) A two cycle exits iff F(F(z)) ==

= 1 =4 \F(x) — \F%(x)
= 2 = 1622 — 42222 — 1622\ + 82313 — 2*\3

We can factorize this equation, because the fixed point is a solution of F/(F'(x))

x. By polynomial division (or verify by multiplication)

[F(z) — 2] (2202 — 42X? — 2A + 44X + 1) = 1623 —2—(4N2+160%) 27 +82° A3~z A3 .
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This means the existence of the two cycle is governed by the equations

22N —dx N2 —aA+4N+1=0.

We solve this by
AN N EAV16M? —8) —3
Ty = 5 .
2\
Thus z+ € R iff 162 — 8\ — 3 > 0. Therefore the existence of the two cycle
requires

(1+40)(AX—3)>0 = A>3/4

Compute the solution of this equation and use it to argue that the existence of
a 2-cycle requires A > 3/4.
i1i) A two cycle is stable iff for G(z) = F(F(z))

|G/ ()] < 1 & |F(zg4)F(z2)] < 1

Therefore
|F(a4)F(z)] = (47 — 2224 )(4A — 2)a_)|
(-1 VI —8A—3) (1 - Viow — A - 3)]
= |1 — (16A% — 8X — 3)|
= |16A% — 8\ — 4| < 1,
such that

1602 -8\ —5<0 A 16A2—-8\—3>0
A=21-VvBe)][A-1a+vE)] <0 A A+ (A=-3)>0
A<ia+ve) A A>3

= The domain of stability for the two cycle is @
3 1
- <A< =1 .
1 <A< 4:( +v6)
The bifurcation diagram is
/r\ X
_ &+
Xzf 2 /J 3
T £ 4 LY
i g : kg
¥ v glerl
A
> =20




