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Dynamical Systems II

Solutions and marking scheme for coursework 2

������������: Each question carries 20 marks.

1) i) We have the following corollary: Suppose that for the system �̇x = �X(�x) we

have transformed the linearized system �̇x = A�x with the help of �x = U�y into the

Jordan normal form

�̇y = U−1AU�y = J�y =

(
0 ω

−ω 0

)

, (1)

where �x = U�y, �̇y = �Y (�y). Then if the stability index

I = ω
(
Y 1111 + Y 1122 + Y 2112 + Y 2222

)
+Y 111(Y

2
11−Y 112)+Y 222(Y 212−Y 122)+Y 211Y 212−Y 122Y 112

computed from (1) and �̇y = �Y (�y) is negative, the origin is asymptotically stable.

We compute the Jacobian for the system

ẋ1 = 7x2 ẋ2 = −(x21 − λ)x2 − 7x1 − 2x31

to

A =

(
0 7

−7 0

)

.

Note this is already in Jordan normal form, such that A = J and �X = �Y .

Therefore ω = 7. The only nonvanishing term in I is Y 2112 = −2. This means

I = ωY 2112 = −14.

As I is negative it follows that the origin is asymptotically stable. 5

ii) Hopf bifurcation theorem: Let (0,0,λ) with λ ∈ R be a fixed point of the

system

ẋ1 = F (x1, x2, λ)

ẋ2 = G(x1, x2, λ).

If
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i) The eigenvalues e1(λ) and e2(λ) of the linearized system are purely imaginary

for some value λ = λ̃, i.e. e1(λ) ∈ iR and e2(λ) ∈ iR.

ii) The real part of the eigenvalues Re(e1/2(λ)) satisfies

d

dλ
Re(e1/2(λ))

∣∣∣∣
λ=λ̃

> 0.

iii) The origin is asymptotically stable for λ = λ̃.

then

a) λ = λ̃ is a bifurcation point of the system.

b) For λ ∈ (λ1, λ̃) with some λ1 < λ̃ the origin is a stable focus.

c) For λ ∈ (λ̃, λ2) with some λ2 > λ̃ the origin is an unstable focus surrounded

by a stable limit cycle whose size increases with λ. State the Hopf bifurca-

tion theorem and use it to prove that the system possesses a Hopf bifurcation

for λ = 0. 3

The Jacobian matrix for λ �= 0 is

A =

(
0 7

−7 λ

)

,

with eigenvalues e± = λ/2±
√
λ2 − 196.

i) for λ = 0 the eigenvales are purely imaginary e± = ±i7.
ii) we compute

d

dλ
Re(e1/2(λ))

∣∣∣∣
λ=λ̃=0

=
1

2
> 0.

iii) from part i) of the question we know that the origin is asymptotically stable.

Therefore the Hopf bifurcation theorem applies. 3

iii) We have

ṙ = 0 for r = 0, 2λ and ṙ > 0 for r �= 0, 2λ

Therefore

Lα(�x) =

{
0 for 0 ≤ r < 2λ

C2λ for r �= 2λ Lω(�x) =






0 for r = 0

C2λ for 0 < r ≤ 2λ
∅ for r > 2λ

Phase portrait:

— 2 —
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4

The fixed points are at r = 0 and r = 2λ. With F (r, λ) follows

∂F

∂r
= 4λ3 − 8rλ2 + 3r2λ = 0 ⇒ λ = 0

∂F

∂λ
= r3 − 8r2λ+ 12rλ2 = 0 ⇒ r = 0

which means there is a transcritical bifurcation point at (0, 0), which follows

from the definition: Let (x0, λ0) be a fixed point for the system ẋ = F (x, λ). If

∂F/∂λ|(x
0
,λ0) = 0 and ∂F/∂x|(x

0
,λ0) = 0 and if through (x0, λ0) pass two and

only two braches of the equilibrium curve which have both distinct tangents at

(x0, λ0), then (x0, λ0) is called a transcritical bifurcation.

Bifurcation diagram: 5

∑
= 20

2) i) We compute

V (x) = ge−x cosx

V ′(x) = −ge−x(sinx+ cosx)
V ′′(x) = 2ge−x sinx

The stationary points are obtained from V ′(x) = 0. Therefore sinx + cosx =√
2 sin(π/4 + x) = 0. This means the stationary points are at 4

— 3 —
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x(n) = −π
4
+ nπ.

Next we compute

V ′′(x(n)) = 2ge
π

4
−nπ sin

(
−π
4
+ nπ

)
=
√
2(−1)n+1geπ4−nπ.

for g ∈ R+, n even: V ′′(x(n)) < 0⇒maximum at x(n) ⇒saddle point at (x(n), 0),

for g ∈ R+, n odd: V ′′(x(n)) > 0⇒minimum at x(n) ⇒centre at (x(n), 0),

for g ∈ R−, n even: V ′′(x(n)) > 0⇒minimum at x(n) ⇒centre at (x(n), 0),

for g ∈ R−, n odd: V ′′(x(n)) < 0⇒maximum at x(n) ⇒saddle point at (x(n), 0). 2

ii) The separatrix passes through the saddle point, i.e.

H(−π/4, 0) = 1/2eπ/4 cos(−π/4) = Esaddle

Therefore the equation of the separatrix results from

Esaddle =
1

2
x22 +

1

2
e−x1 cosx1

that is

x2 = ±2
√
Esaddle −

1

2
e−x1 cosx1

= ±
√

1√
2
eπ/4 − e−x1 cosx1

3

6

— 4 —
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iii) First compute the energy using the initial conditions

H(0, 1/2) =
1

2

(
1

2

)2
=
1

8
= E

The turning points result from x2 = 0

E =
1

8
= H(xt, 0) =

1

8
x8t ⇒ xt = ±1.

The period is then computed from

T = 2

∫ β

α

dx
√
2[E − V (x)]

= 2

∫ 1

−1

dx
√
2[1/8− x8/8]

= 8

∫ 1

0

dx√
1− x8

= 8
√
πΓ(9/8)/Γ(5/8)

5
∑
= 203) We have

xn+1 = F (xn) = λxn(4− xn) for λ ∈ R+.

i) In order to find the fixed points we need to solve

x = F (x) = λx(4− x) ⇔ x(x+
1

λ
− 4) = 0

Therefore, the fixed points are 1

x
(1)
f = 0 and x

(2)
f = 4− 1

λ
.

A fixed point is stable iff |F ′(x)| < 1.

⇒ F ′(x) = 4λ− 2λx

⇒
∣∣∣F ′(x(1)f )

∣∣∣ = |4λ| > 1 for λ > 1/4. ⇒ x
(1)
f is unstable for λ > 1/4.

⇒
∣∣∣F ′(x(1)f )

∣∣∣ = |4λ− 8λ+ 2| < 1 for −1 < 2− 4λ < 1 ⇒ 1/4 < λ < 3/4

⇒ x
(2)
f is stable for 1/4 < λ < 3/4. 4

ii) A two cycle exits iff F (F (x)) = x

⇒ x = 4λF (x)− λF 2(x)

⇒ x = 16xλ2 − 4x2λ2 − 16x2λ3 + 8x3λ3 − x4λ3

We can factorize this equation, because the fixed point is a solution of F (F (x)) =

x. By polynomial division (or verify by multiplication)

[F (x)− x]
(
x2λ2 − 4xλ2 − xλ+ 4λ+ 1

)
= 16xλ2−x−(4λ2+16λ3)x2+8x3λ3−x4λ3 .

— 5 —
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This means the existence of the two cycle is governed by the equations

x2λ2 − 4xλ2 − xλ+ 4λ+ 1 = 0.

We solve this by 5

x± =
4λ2 + λ± λ

√
16λ2 − 8λ− 3

2λ2
.

Thus x± ∈ R iff 16λ2 − 8λ − 3 ≥ 0. Therefore the existence of the two cycle

requires

(1 + 4λ)(4λ− 3) ≥ 0 ⇒ λ ≥ 3/4
Compute the solution of this equation and use it to argue that the existence of

a 2-cycle requires λ ≥ 3/4. 2

iii) A two cycle is stable iff for G(x) = F (F (x))
∣∣G′(x)

∣∣ < 1 ⇔ |F (x+)F (x−)| < 1
Therefore

|F (x+)F (x−)| = |(4λ− 2λx+)(4λ− 2λx−)|
=
∣∣∣
(
−1 +

√
16λ2 − 8λ− 3

)(
−1−

√
16λ2 − 8λ− 3

)∣∣∣

=
∣∣1−

(
16λ2 − 8λ− 3

)∣∣

=
∣∣16λ2 − 8λ− 4

∣∣ < 1,

such that

16λ2 − 8λ− 5 < 0 ∧ 16λ2 − 8λ− 3 > 0[
λ− 1

4(1−
√
6)
] [
λ− 1

4(1 +
√
6)
]
< 0 ∧

(
λ+ 1

4

) (
λ− 3

4

)
> 0

λ < 1
4(1 +

√
6) ∧ λ > 3

4

⇒ The domain of stability for the two cycle is 6

3

4
< λ <

1

4
(1 +

√
6).

The bifurcation diagram is 2

∑
= 20
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