## Dynamical Systems II

## Solutions and marking scheme for coursework 2

instructions: Each question carries 20 marks.

1. (i) Bifurcation theory investigates how the number of steady solutions of systems of the type $\dot{x}=F(x, \lambda)$ depend on the parameter $\lambda$. A bifurcation occurs if the solution of $\dot{x}=F(x, \lambda)$ changes its qualitative behaviour as the parameter $\lambda$ varies. Considering $F(x, \lambda)=0$ leads to a plot in the $(x, \lambda)$-plane called the bifurcation diagram.

The fixed points are found from

$$
F(x, \lambda)=x^{3}+\gamma x^{2}-\lambda x=0
$$

i.e. they are at the three curves

$$
x_{1}=0 \quad x_{2 / 3}=\frac{1}{2}\left(-\gamma \pm \sqrt{\gamma^{2}+4 \lambda}\right)
$$

In order to characterize the types of bifurcations we need

$$
\frac{\partial F(x, \lambda)}{\partial x}=3 x^{2}+2 \gamma x-\lambda \quad \text { and } \quad \frac{\partial F(x, \lambda)}{\partial \lambda}=-x
$$

- A point $\left(x_{0}, \lambda_{0}\right)$ on the equilibrium curve for the system $\dot{x}=F(x, \lambda)$ is called a pitchfork bifurcation if $\partial F /\left.\partial \lambda\right|_{\left(x_{0}, \lambda_{0}\right)}=0, \partial F /\left.\partial x\right|_{\left(x_{0}, \lambda_{0}\right)}=0$ and $d \lambda / d x$ changes sign on one branch of the equilibrium curve with distinct tangents, where $\lambda(x)$ is the solution of the equation $F(x, \lambda)=0$.
$\partial F /\left.\partial \lambda\right|_{\left(x_{0}, \lambda_{0}\right)}=0$ gives $x_{0}=0$ and subsequently $\partial F /\left.\partial x\right|_{\left(x_{0}, \lambda_{0}\right)}=0$ gives $\lambda_{0}=0$. Since $d \lambda / d x=2 x$ changes sign at $x_{0}=0$ and this branch has a different tangent than $x_{1}=0$, the point $\left(x_{0}, \lambda_{0}\right)=(0,0)$ constitutes a pitchfork bifurcation.
- A point $\left(x_{0}, \lambda_{0}\right)$ on the equilibrium curve for the system $\dot{x}=F(x, \lambda)$ is called a transcritical bifurcation if $\partial F /\left.\partial \lambda\right|_{\left(x_{0}, \lambda_{0}\right)}=0, \partial F /\left.\partial x\right|_{\left(x_{0}, \lambda_{0}\right)}=0$ and in addition two and only two branches of the equilibrium curve pass through this point which have both distinct tangents at $\left(x_{0}, \lambda_{0}\right)$.
For $\gamma \neq 0$ we have $d \lambda / d x=2 x+\gamma$, which no longer changes sign at $x_{0}=0$. However, only two branches pass through this point and their tangents are distinct, such that $\left(x_{0}, \lambda_{0}\right)=(0,0)$ constitutes a transcritical bifurcation.
- A point $\left(x_{0}, \lambda_{0}\right)$ on the equilibrium curve for the system $\dot{x}=F(x, \lambda)$ is called a turning point if $\partial F /\left.\partial \lambda\right|_{\left(x_{0}, \lambda_{0}\right)} \neq 0$ and $\partial \lambda / \partial x$ changes sign at this point.
From

$$
\frac{\partial x_{2}}{\partial \lambda}=\frac{1}{\sqrt{\gamma^{2}+4 \gamma}} \quad \text { and } \quad \frac{\partial x_{3}}{\partial \lambda}=-\frac{1}{\sqrt{\gamma^{2}+4 \gamma}}
$$

follows that $\partial x / \partial \lambda$ changes sign for $\lambda_{0}=-\gamma^{2} / 4$, such that $x_{2}\left(\lambda_{0}\right)=$ $x_{3}\left(\lambda_{0}\right)=x_{0}=-\gamma / 2$. Since $\partial F / \partial \lambda_{\left(x_{0}, \lambda_{0}\right)}=\gamma / 2 \neq 0$ this mean

$$
\left(x_{0}, \lambda_{0}\right)=\left(-\gamma / 2,-\gamma^{2} / 4\right)
$$

is a turning point for the above system.
(ii) We make use of the follwoing corollary: Suppose that for the system $\dot{\vec{x}}=\vec{F}(\vec{x})$, we have transformed the linearized system $\dot{\vec{x}}=A \vec{x}$, with the help of $\vec{x}=U \vec{y}$ into the Jordan normal form

$$
\dot{\vec{y}}=U^{-1} A U \vec{y}=J \vec{y}=\left(\begin{array}{cc}
0 & \omega  \tag{1}\\
-\omega & 0
\end{array}\right),
$$

with $\omega \in \mathbb{R}^{+}$. Then the origin is asymptotically stable if the stability index $I$, computed from the transformed system $\dot{\vec{y}}=\vec{Y}(\vec{y})$, is negative.
Thus we compute the Jacobian matrix for the system

$$
\begin{aligned}
& \dot{x}_{1}=9 x_{2}+3 x_{1}^{2} \\
& \dot{x}_{2}=\lambda x_{2}-2 x_{1}^{2} x_{2}-9 x_{1}-2 x_{1}^{3}+\alpha x_{1}^{2}
\end{aligned}
$$

to

$$
A\left(\vec{x}_{f}\right)=\left(\begin{array}{cc}
0 & 9 \\
-9 & \lambda
\end{array}\right)
$$

We note that for $\lambda=0$ this is already in Jordan normal form, such that $A=J$ and $\vec{X}=\vec{Y}$. Therefore $\omega=9$. The only nonvanishing terms in $I$ are

$$
Y_{112}^{2}=-4, \quad Y_{11}^{2}=2 \alpha \quad \text { and } \quad Y_{11}^{1}=6 .
$$

Therefore

$$
I=\omega Y_{112}^{2}+Y_{11}^{2} Y_{11}^{1}=9(-4)+12 \alpha=12 \alpha-36 .
$$

This means $I$ is negative for $\alpha<3$, i.e. the origin is asymptotically stable for $\alpha<3$.
(iii) Hopf bifurcation theorem: Let the point $(0,0, \lambda)$, with $\lambda \in \mathbb{R}$, be a fixed point 4 for the system

$$
\begin{align*}
\dot{x}_{1} & =F_{1}\left(x_{1}, x_{2}, \lambda\right),  \tag{2}\\
\dot{x}_{2} & =F_{2}\left(x_{1}, x_{2}, \lambda\right), \tag{3}
\end{align*}
$$

for all values of $\lambda$. If for a particular value of $\lambda$, say $\lambda=\tilde{\lambda}$,
i) the eigenvalues $e_{1}(\lambda)$ and $e_{2}(\lambda)$ of the linearized system are purely imaginary, i.e. $e_{1}(\tilde{\lambda}) \in i R$ and $e_{2}(\tilde{\lambda}) \in i R$,
ii) the real part of the eigenvalues $\operatorname{Re}\left(e_{1}(\lambda)\right)=\operatorname{Re}\left(e_{2}(\lambda)\right)$ satisfies

$$
\begin{equation*}
\left.\frac{d}{d \lambda} \operatorname{Re}\left(e_{1 / 2}(\lambda)\right)\right|_{\lambda=\tilde{\lambda}}>0 \tag{4}
\end{equation*}
$$

iii) the origin is asymptotically stable for $\lambda=\tilde{\lambda}$, then the following statements hold:
a) The point with $\lambda=\tilde{\lambda}$ is a bifurcation point of the system.
b) For $\lambda \in\left(\lambda_{1}, \tilde{\lambda}\right)$ with some $\lambda_{1}<\tilde{\lambda}$ the origin is a stable focus.
c) For $\lambda \in\left(\tilde{\lambda}, \lambda_{2}\right)$ with some $\lambda_{2}>\tilde{\lambda}$ the origin is an unstable focus surrounded by a stable limit cycle whose size increases with $\lambda$.

The eigenvalues for the Jacobian matrix with $\lambda \neq 0$ are computed to

$$
e_{ \pm}=\frac{1}{2}\left(\lambda \pm \sqrt{\lambda^{2}-324}\right)
$$

i) for $\lambda=0$ the eigenvales are purely imaginary: $e_{ \pm}= \pm i 9$.
ii) we compute

$$
\left.\frac{d}{d \lambda} \operatorname{Re}\left(e_{1 / 2}(\lambda)\right)\right|_{\lambda=\tilde{\lambda}=0}=\frac{1}{2}>0
$$

iii) from part (ii) of the question we know that the origin is asymptotically stable for $\alpha=2$.
Therefore the Hopf bifurcation theorem applies for $\alpha=2$. The situation is inconclusive for $\alpha=4$.
2. (i) Def.: A system of differential equations on $\mathbb{R}^{2}$ is said to be a Hamiltonian system with one degree of freedom if there exists a twice continuously differentiable function $H\left(x_{1}, x_{2}\right)$ such that

$$
\begin{equation*}
\dot{x}_{1}=\frac{\partial H}{\partial x_{2}} \quad \text { and } \quad \dot{x}_{2}=-\frac{\partial H}{\partial x_{1}} \tag{5}
\end{equation*}
$$

The equations (5) are said to be the equations of motions correponding to the Hamiltonian $H$. When $H$ does not depend explicitly on the time $t$, i.e. it is of the form $H\left(x_{1}(t), x_{2}(t)\right)$ and not $H\left(x_{1}(t), x_{2}(t), t\right)$, the system is called autonomous.
(ii) A dynamical system

$$
\dot{x}_{1}=F_{1}\left(x_{1}, x_{2}\right) \quad \text { and } \quad \dot{x}_{2}=F_{2}\left(x_{1}, x_{2}\right)
$$

is a Hamiltonian system if and only if

$$
\operatorname{div} \vec{F}=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}=0
$$

We compute

$$
\operatorname{div} \vec{F}=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}=3 \mu x_{1} x_{2}^{2}+2-6 x_{1} x_{2}^{2}-2=0
$$

Therefore the system is a Hamiltonian system when $\mu=2$. [Sorry, there was a typo on the question sheet. It should have read $\dot{x}_{2}=-\mu x_{1} x_{2}^{3}-2 x_{2}+\sin \left(x_{1}^{5}\right)$ instead of $\dot{x}_{2}=-\mu x_{1}^{2} x_{2}^{3}-2 x_{2}+\sin \left(x_{1}^{5}\right)$. Full marks were therefore usually given even for answers like $\mu=2 / x_{1}$.]
(iii) Def.: A Hamiltonian system which is of the form

$$
H\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{2}^{2}+V\left(x_{1}\right),
$$

where $V\left(x_{1}\right)$ is a function which only depends on $x_{1}$ and not $x_{2}$ is called a potential system with potential (function) $V\left(x_{1}\right)$.
From the definition in (i) follows

$$
\begin{aligned}
& \dot{x}_{1}=\frac{\partial H}{\partial x_{2}}=x_{2} \Rightarrow H\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{2}^{2}+f\left(x_{1}\right) \\
& \dot{x}_{2}=-\frac{\partial H}{\partial x_{1}}=-2 x_{1}+\frac{20 x_{1}}{1+x_{1}^{2}} \Rightarrow H\left(x_{1}, x_{2}\right)=x_{1}^{2}-10 \ln \left(1+x_{1}^{2}\right)+f\left(x_{2}\right) .
\end{aligned}
$$

Therefore

$$
H\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{2}^{2}+x_{1}^{2}-10 \ln \left(1+x_{1}^{2}\right)+c,
$$

such that the potential is

$$
V\left(x_{1}\right)=x_{1}^{2}-10 \ln \left(1+x_{1}^{2}\right)+c .
$$

From $V(0)=0$ follows $c=0$.
(iv) The fixed points for the Hamiltonian system described by

$$
\begin{equation*}
H\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{2}^{2}+V\left(x_{1}\right) \tag{6}
\end{equation*}
$$

are located at the points $\left(a_{k}, 0\right)$ with $k=1,2,3, \ldots$, where the $a_{k}$ are stationary points of the potential $V\left(x_{1}\right)$. If $V\left(a_{k}\right)$ is a minimum then the point $\left(a_{k}, 0\right)$ is a centre and if on the other hand $V\left(a_{k}\right)$ is a maximum the point $\left(a_{k}, 0\right)$ is a saddle point.
We compute the stationary points from

$$
V^{\prime}\left(x_{1}\right)=2 x_{1}-\frac{20 x_{1}}{1+x_{1}^{2}}=\frac{2 x_{1}\left(x_{1}^{2}-9\right)}{1+x_{1}^{2}}=0 \quad \text { for } x_{1}=0, \pm 3 .
$$

Furthermore

$$
V^{\prime \prime}\left(x_{1}\right)=2-10\left(-\frac{4 x_{1}^{2}}{\left(1+x_{1}^{2}\right)^{2}}+\frac{2}{1+x_{1}^{2}}\right)
$$

and therefore

$$
\begin{aligned}
V^{\prime \prime}(0) & =-18 \Rightarrow x_{1}=0 \text { is a maximum of } V\left(x_{1}\right) \Rightarrow(0,0) \text { is a saddle point, } \\
V^{\prime \prime}( \pm 3) & =\frac{18}{5} \Rightarrow x_{1}= \pm 3 \text { are minima of } V\left(x_{1}\right) \Rightarrow( \pm 3,0) \text { are centres }
\end{aligned}
$$

(v) The separatrix crosses the saddle point, i.e. $H(0,0)=0$ is conserved on the separatrix. The equation for the separatrix is therefore

$$
0=\frac{1}{2} x_{2}^{2}+x_{1}^{2}-10 \ln \left(1+x_{1}^{2}\right) \Rightarrow x_{2}= \pm \sqrt{-2 x_{1}^{2}+20 \ln \left(1+x_{1}^{2}\right)} .
$$

The direction of time follows from $\dot{x}_{1}>0$ for $x_{2}>0$ and $\dot{x}_{1}<0$ for $x_{2}<0$.
All trajectories are bounded.
We assemble all the information in the diagram:

3. (i) The fixed points are found from

$$
F(x)=x \quad \Leftrightarrow \quad 8 \lambda x-4 \lambda x^{2}=x
$$

This means we have fixed points at

$$
x_{f}^{(1)}=0 \quad \text { and } \quad x_{f}^{(2)}=2-\frac{1}{4 \lambda} .
$$

A fixed point $x_{f}$ is stable iff $\left|F^{\prime}\left(x_{f}\right)\right|<1$. With $F^{\prime}(x)=8 \lambda-8 \lambda x$ follows that $x_{f}^{(1)}$ is stable for $|8 \lambda|<1$, that is $\lambda<1 / 8$.
$x_{f}^{(2)}$ is stable for $|2-8 \lambda|<1$, that is $1 / 8<\lambda<3 / 8$.
(ii) A 2-cycle exists if $F(F(x))=x$. Compute

$$
\begin{aligned}
x & =8 \lambda F(x)-4 \lambda F^{2}(x) \\
& =8 \lambda\left(8 \lambda x-4 \lambda x^{2}\right)-4 \lambda\left(8 \lambda x-4 \lambda x^{2}\right)^{2} \\
& =64 \lambda^{2} x-64 \lambda^{3} x^{4}+256 \lambda^{3} x^{3}-256 \lambda^{3} x^{2}-32 \lambda^{2} x^{2} \\
& =32\left(2 \lambda^{2} x-2 \lambda^{3} x^{4}+8 \lambda^{3} x^{3}-8 \lambda^{3} x^{2}-\lambda^{2} x^{2}\right)
\end{aligned}
$$

Since the fixed point is a solution of this equation, we can factor out the term $F(x)-x$. Not knowing the answer the can be done by polynomial devision, but in this case it is sufficient to verify that:

$$
\begin{aligned}
& (F(x)-x)\left(1+8 \lambda-4 x \lambda-32 x \lambda^{2}+16 x^{2} \lambda^{2}\right) \\
= & 32\left(2 \lambda^{2} x-2 \lambda^{3} x^{4}+8 \lambda^{3} x^{3}-8 \lambda^{3} x^{2}-\lambda^{2} x^{2}\right)-x=0
\end{aligned}
$$

This means we require

$$
1+8 \lambda-4 x \lambda-32 x \lambda^{2}+16 x^{2} \lambda^{2}=0
$$

for a two cycle to exist. Solving this quadratic equation gives

$$
x_{ \pm}=1+\frac{1}{8 \lambda} \pm \frac{1}{8 \lambda} \sqrt{64 \lambda^{2}-16 \lambda-3}
$$

For this to be real we require

$$
64 \lambda^{2}-16 \lambda-3 \geq 0
$$

Therefore the existence of a two cycle is ensured iff

$$
(8 \lambda+1)(8 \lambda-1) \geq 0
$$

which means $\lambda \geq 3 / 8$.
(iii) The 2 cycle is stable for $G(x)=F(F(x))$

$$
\left|G^{\prime}(x)\right|<1 \quad \Leftrightarrow \quad\left|F^{\prime}\left(x_{+}\right) F^{\prime}\left(x_{-}\right)\right|<1
$$

Compute therefore

$$
\left|\left(8 \lambda-8 \lambda x_{+}\right)\left(8 \lambda-8 \lambda x_{-}\right)\right|=\left|4+16 \lambda-64 \lambda^{2}\right|<1
$$

This means the two cycle is stable in the regime

$$
\frac{3}{8}<\lambda<\frac{1}{8}(1+\sqrt{6})
$$

and unstable for $\lambda>(1+\sqrt{6}) / 8$

