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Dynamical Systems II

Solutions and marking scheme for coursework 2

������������: Each question carries 20 marks.

1. (i) Bifurcation theory investigates how the number of steady solutions of systems 2

of the type ẋ = F (x, λ) depend on the parameter λ. A bifurcation occurs if

the solution of ẋ = F (x, λ) changes its qualitative behaviour as the parameter

λ varies. Considering F (x, λ) = 0 leads to a plot in the (x, λ)-plane called the

bifurcation diagram.

The fixed points are found from 2

F (x, λ) = x3 + γx2 − λx = 0.

i.e. they are at the three curves

x1 = 0 x2/3 =
1

2

(
−γ ±

√
γ2 + 4λ

)
.

In order to characterize the types of bifurcations we need

∂F (x, λ)

∂x
= 3x2 + 2γx− λ and

∂F (x, λ)

∂λ
= −x.

• A point (x0, λ0) on the equilibrium curve for the system ẋ = F (x, λ) is 2

called a pitchfork bifurcation if ∂F/∂λ|(x
0
,λ0) = 0, ∂F/∂x|(x

0
,λ0) = 0 and

dλ/dx changes sign on one branch of the equilibrium curve with distinct

tangents, where λ(x) is the solution of the equation F (x, λ) = 0.

∂F/∂λ|(x
0
,λ0) = 0 gives x0 = 0 and subsequently ∂F/∂x|(x

0
,λ0) = 0 gives

λ0 = 0. Since dλ/dx = 2x changes sign at x0 = 0 and this branch has

a different tangent than x1 = 0, the point (x0, λ0) = (0, 0) constitutes a

pitchfork bifurcation.

• A point (x0, λ0) on the equilibrium curve for the system ẋ = F (x, λ) is 2

called a transcritical bifurcation if ∂F/∂λ|(x
0
,λ0) = 0, ∂F/∂x|(x

0
,λ0) = 0

and in addition two and only two branches of the equilibrium curve pass

through this point which have both distinct tangents at (x0, λ0).

For γ �= 0 we have dλ/dx = 2x+γ, which no longer changes sign at x0 = 0.

However, only two branches pass through this point and their tangents are

distinct, such that (x0, λ0) = (0, 0) constitutes a transcritical bifurcation.
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• A point (x0, λ0) on the equilibrium curve for the system ẋ = F (x, λ) is 4

called a turning point if ∂F/∂λ|(x
0
,λ0) �= 0 and ∂λ/∂x changes sign at this

point.

From
∂x2
∂λ

=
1

√
γ2 + 4γ

and
∂x3
∂λ

= − 1
√
γ2 + 4γ

.

follows that ∂x/∂λ changes sign for λ0 = −γ2/4, such that x2(λ0) =

x3(λ0) = x0 = −γ/2. Since ∂F/∂λ|(x
0
,λ0) = γ/2 �= 0 this mean

(x0, λ0) = (−γ/2,−γ2/4)

is a turning point for the above system.

(ii) We make use of the follwoing corollary: Suppose that for the system �̇x = �F (�x),we 4

have transformed the linearized system �̇x = A�x,with the help of �x = U�y into the

Jordan normal form

�̇y = U−1AU�y = J�y =

(
0 ω

−ω 0

)

, (1)

with ω ∈ R+. Then the origin is asymptotically stable if the stability index I,

computed from the transformed system �̇y = �Y (�y), is negative.

Thus we compute the Jacobian matrix for the system

ẋ1 = 9x2 + 3x
2
1

ẋ2 = λx2 − 2x21x2 − 9x1 − 2x31 + αx21

to

A(�xf ) =

(
0 9

−9 λ

)

We note that for λ = 0 this is already in Jordan normal form, such that A = J

and �X = �Y . Therefore ω = 9. The only nonvanishing terms in I are

Y 2112 = −4, Y 211 = 2α and Y 111 = 6.

Therefore

I = ωY 2112 + Y 211Y
1
11 = 9(−4) + 12α = 12α− 36.

This means I is negative for α < 3, i.e. the origin is asymptotically stable for

α < 3.

(iii) Hopf bifurcation theorem: Let the point (0,0,λ), with λ ∈ R, be a fixed point 4

for the system

ẋ1 = F1(x1, x2, λ), (2)

ẋ2 = F2(x1, x2, λ), (3)

for all values of λ. If for a particular value of λ, say λ = λ̃,

— 2 —
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i) the eigenvalues e1(λ) and e2(λ) of the linearized system are purely imaginary,

i.e. e1(λ̃) ∈ iR and e2(λ̃) ∈ iR,

ii) the real part of the eigenvalues Re(e1(λ)) = Re(e2(λ)) satisfies

d

dλ
Re(e1/2(λ))

∣∣∣∣
λ=λ̃

> 0, (4)

iii) the origin is asymptotically stable for λ = λ̃,

then the following statements hold:

a) The point with λ = λ̃ is a bifurcation point of the system.

b) For λ ∈ (λ1, λ̃) with some λ1 < λ̃ the origin is a stable focus.

c) For λ ∈ (λ̃, λ2) with some λ2 > λ̃ the origin is an unstable focus surrounded

by a stable limit cycle whose size increases with λ.

The eigenvalues for the Jacobian matrix with λ �= 0 are computed to

e± =
1

2

(
λ±

√
λ2 − 324

)
.

i) for λ = 0 the eigenvales are purely imaginary: e± = ±i9.
ii) we compute

d

dλ
Re(e1/2(λ))

∣∣∣∣
λ=λ̃=0

=
1

2
> 0.

iii) from part (ii) of the question we know that the origin is asymptotically

stable for α = 2.

Therefore the Hopf bifurcation theorem applies for α = 2. The situation is

inconclusive for α = 4.
∑
= 20

2. (i) Def.: A system of differential equations on R2 is said to be a Hamiltonian system 2

with one degree of freedom if there exists a twice continuously differentiable func-

tion H(x1, x2) such that

ẋ1 =
∂H

∂x2
and ẋ2 = −

∂H

∂x1
. (5)

The equations (5) are said to be the equations of motions correponding to the

Hamiltonian H. When H does not depend explicitly on the time t, i.e. it

is of the form H(x1(t), x2(t)) and not H(x1(t), x2(t), t), the system is called

autonomous.

(ii) A dynamical system 2

ẋ1 = F1(x1, x2) and ẋ2 = F2(x1, x2),

is a Hamiltonian system if and only if

div �F =
∂F1
∂x1

+
∂F2
∂x2

= 0.

— 3 —
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We compute

div �F =
∂F1
∂x1

+
∂F2
∂x2

= 3µx1x
2
2 + 2− 6x1x22 − 2 = 0.

Therefore the system is a Hamiltonian system when µ = 2. [Sorry, there was a

typo on the question sheet. It should have read ẋ2 = −µx1x32 − 2x2 + sin(x51)
instead of ẋ2 = −µx21x32−2x2+sin(x51). Full marks were therefore usually given
even for answers like µ = 2/x1.]

(iii) Def.: A Hamiltonian system which is of the form 5

H(x1, x2) =
1

2
x22 + V (x1),

where V (x1) is a function which only depends on x1 and not x2 is called a

potential system with potential (function) V (x1).

From the definition in (i) follows

ẋ1 =
∂H

∂x2
= x2 ⇒ H(x1, x2) =

1

2
x22 + f(x1)

ẋ2 = −∂H

∂x1
= −2x1 +

20x1
1 + x21

⇒ H(x1, x2) = x21 − 10 ln(1 + x21) + f(x2).

Therefore

H(x1, x2) =
1

2
x22 + x21 − 10 ln(1 + x21) + c,

such that the potential is

V (x1) = x21 − 10 ln(1 + x21) + c.

From V (0) = 0 follows c = 0.

(iv) The fixed points for the Hamiltonian system described by 5

H(x1, x2) =
1

2
x22 + V (x1) (6)

are located at the points (ak, 0) with k = 1, 2, 3, . . ., where the ak are stationary

points of the potential V (x1). If V (ak) is a minimum then the point (ak, 0) is

a centre and if on the other hand V (ak) is a maximum the point (ak, 0) is a

saddle point.

We compute the stationary points from

V ′(x1) = 2x1 −
20x1
1 + x21

=
2x1(x

2
1 − 9)

1 + x21
= 0 for x1 = 0,±3.

Furthermore

V ′′(x1) = 2− 10
(
− 4x21
(1 + x21)

2
+

2

1 + x21

)

and therefore

V ′′(0) = −18⇒ x1 = 0 is a maximum of V (x1)⇒ (0, 0) is a saddle point,

V ′′(±3) = 18

5
⇒ x1 = ±3 are minima of V (x1)⇒ (±3, 0) are centres.

— 4 —
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(v) The separatrix crosses the saddle point, i.e. H(0, 0) = 0 is conserved on the 6

separatrix. The equation for the separatrix is therefore

0 =
1

2
x22 + x21 − 10 ln(1 + x21)⇒ x2 = ±

√
−2x21 + 20 ln(1 + x21).

The direction of time follows from ẋ1 > 0 for x2 > 0 and ẋ1 < 0 for x2 < 0.

All trajectories are bounded.

We assemble all the information in the diagram:

∑
= 20

3. (i) The fixed points are found from 1

F (x) = x ⇔ 8λx− 4λx2 = x

This means we have fixed points at 3

x
(1)
f = 0 and x

(2)
f = 2− 1

4λ
.

A fixed point xf is stable iff |F ′(xf )| < 1. With F ′(x) = 8λ− 8λx follows that

x
(1)
f is stable for |8λ| < 1, that is λ < 1/8.

x
(2)
f is stable for |2− 8λ| < 1, that is 1/8 < λ < 3/8.

— 5 —
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(ii) A 2-cycle exists if F (F (x)) = x. Compute 6

x = 8λF (x)− 4λF 2(x)
= 8λ(8λx− 4λx2)− 4λ(8λx− 4λx2)2

= 64λ2x− 64λ3x4 + 256λ3x3 − 256λ3x2 − 32λ2x2

= 32(2λ2x− 2λ3x4 + 8λ3x3 − 8λ3x2 − λ2x2)

Since the fixed point is a solution of this equation, we can factor out the term

F (x)−x. Not knowing the answer the can be done by polynomial devision, but

in this case it is sufficient to verify that: 4

(F (x)− x) (1 + 8λ− 4xλ− 32xλ2 + 16x2λ2)
= 32(2λ2x− 2λ3x4 + 8λ3x3 − 8λ3x2 − λ2x2)− x = 0

This means we require 3

1 + 8λ− 4xλ− 32xλ2 + 16x2λ2 = 0

for a two cycle to exist. Solving this quadratic equation gives

x± = 1 +
1

8λ
± 1

8λ

√
64λ2 − 16λ− 3

For this to be real we require

64λ2 − 16λ− 3 ≥ 0.

Therefore the existence of a two cycle is ensured iff

(8λ+ 1)(8λ− 1) ≥ 0,

which means λ ≥ 3/8.
(iii) The 2 cycle is stable for G(x) = F (F (x)) 3

∣∣G′(x)
∣∣ < 1 ⇔

∣∣F ′(x+)F ′(x−)
∣∣ < 1

Compute therefore

|(8λ− 8λx+)(8λ− 8λx−)| =
∣∣4 + 16λ− 64λ2

∣∣ < 1

This means the two cycle is stable in the regime

3

8
< λ <

1

8
(1 +

√
6)

and unstable for λ > (1 +
√
6)/8

∑
= 20
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