CITY UNIVERSITY LONDON Excel VBA Progress Test

11-th of January 2006
Group B

This is an open book exam. You may use your lecture notes as well as taskand solution-sheets from previous lab-sessions in printed form.

Write down your complete answers in the booklet provided.
Full marks may be obtained for correct answers to all four questions. Each questions carries 25 marks.

To avoid possible accusations of cheating close all other applications except Excel before starting this exam.

Time: You have 90 mins to complete this test.

1) i) Write down the command line for an Excel built-in function which produces the following function

$$
f(x)=\left\{\begin{array}{lll}
\sqrt{11 x^{5}} & \text { for } & x \geq 0 \\
\text { complex value } & \text { for } & x<0
\end{array}\right.
$$

This means for $x \geq 0$ the function should compute $\sqrt{11 x^{5}}$ and for $x<0$ the function should produce the output "complex value". Use your function to compute $f(-1)$ and $f(25)$.
ii) Write down the two functions which are produced by the following combinations of Excel built-in functions:
a) $=\operatorname{IF}\left(\operatorname{AND}(\mathrm{x}>-10, \mathrm{x}<=15), \operatorname{IF}(\mathrm{x}<=6, \operatorname{SIN}(\mathrm{x}), \operatorname{COS}(\mathrm{x})), 7^{*} \mathrm{x}^{\wedge} 2\right)$
b) $=\operatorname{IF}(\operatorname{NOT}(\operatorname{OR}(x>6, x<=-1)), 1,0)$

Compute $f(0)$ and $f(15)$ in each case.
2) Design a user defined function called "condsum" which computes conditional sums from a table. The function should have two input variables. The first parameter contains a condition which is used as a criterium to select out particular values from column A. The second parameter identifies the column from which the corresponding values should be taken and summed up. Use the worksheetfunction SUMIF and a SELECT CASE syntax in your program.
Design four cases. 1: sums up the values from column A corresponding to the specified condition. 2: sums the values from column B, which correspond to the specified entries in column A, 3: sums the values from column C, which correspond to the specified entries in column A and 4: sums the values from column D, which correspond to the specified entries in column A. Your function should produce the error message "Use case $1,2,3$ or 4 !", when none of the four cases is selected.

	A	B	C	D
1	10	27	2	420
2	3	11	4	637
3	91	13	6	47
4	0	26	8	293
5	-15	25	10	478
6	28	67	12	381
7	-7	3	14	108
8	69	56	16	802
9	58	13	18	116
10	71	0	20	65

For the above table some example command lines and outputs are:
$=$ condsum $("<0 ", 1) \rightarrow-22$, =condsum $("<0 ", 3) \rightarrow 24$, =condsum $(">80 ", 4) \rightarrow 47$
Use your function to compute for the above table:
$=$ condsum (" $>0 ", 4$), =condsum (" $<>0 ", 2$), $=$ condsum (" $<50 ", 2$), =condsum (" $<=3 ", 3$)
Turn over
3) Write a user defined function called "dates" which determines for two arbitrary dates whether they fall on the same day of the week. If they do not fall on the same day, let your function return the message "The weekdays for the two dates are different." In case they fall both on a Monday let your function return the message "Both dates fall on a Monday." When the weekdays coincide, but are not a Monday the function should produce the message "The weekday for the two dates is the same."
Use two nested IF structures to produce this function. Declare all your variable types including auxillary variables.
Use your function to determine which of the following four people are born on the same day of the week. Isaac Newton (25-th of December 1642), Charles Babbage (26-th of December 1791), Winston Churchill (30-th of November 1874) and Albert Einstein (14-th of March 1879).
4) Write a user defined function named MW, which calculates the molecular weight from a given chemical formula by reading off the data from a given table. Your function should work for molecules which contain two different types of atoms. The function should have four input variables. Two containing the chemical symbols for the two atoms and further two containing the number of times these atoms occur in the molecule. With the help of the worksheetfunction VLOOKUP pick from the table below the corresponding atomic weight for a given symbol.

	A	B	C	D
1	Symbol	Name	Number	Atomic weight
2	Al	Aluminium	13	26.981539
3	As	Arsenic	33	74.92159
4	Ba	Barium	56	137.327
5	Be	Beryllium	4	9.012182
6	H	Hydrogen	1	1.00794
7	Hg	Mercury	80	200.59
8	O	Oxygen	8	15.9994
9	K	Potassium	19	39.0983
10	Na	Sodium	11	22.989768
11	S	Sulphur	16	32.066

(The table shown here is only part of the entire table of the elements which contains all 109 elements.) Round your result to two decimal places. Include a comment into the function "this is a molecular weight calculator". Declare all your variable types including auxillary variables.
For instance for water, i.e. $\mathrm{H}_{2} \mathrm{O}$ the command line for your function should be $=\mathrm{MW}(\mathrm{H}, 2, \mathrm{O}, 1)$ and produce the value 18.02, for Barium dioxide i.e. $\mathrm{BaO} \mathrm{O}_{2}$ the command line for your function should be MW(Ba,1,O,2) and should produce the value 169.33 , etc.

Compute the weights for sulfor dioxide SO_{2} and white arsenic $A s_{4} O_{6}$.

