(Part II) Lab-session 3

1) Carry out the following integrations numerically.

$$
\begin{aligned}
& I_{1}=\int_{1}^{4} \frac{1}{x} d x=\ln 4 \\
& I_{2}=\int_{1}^{2} \exp (x) / x d x \approx 3.059116539 \\
& I_{3}=\int_{0}^{\pi} \sin (x) x^{3} d x=\pi^{3}-6 \pi \\
& I_{4}=\int_{-\infty}^{\infty} e^{-(x-5)^{2}} d x=\sqrt{\pi}
\end{aligned}
$$

a) Write a module to carry out this task which puts the final answer into a cell on the Excel worksheet. Use the trapezoid rule

$$
I=\int_{a}^{b} f(x) d x \approx \Delta\left[\frac{1}{2}\left(y_{1}+y_{n+1}\right)+\sum_{i=2}^{n} y_{i}\right]
$$

as an approximation. Perform the computations by separating the integration interval $[a, b]$ into $n=10, n=100, n=1000$ and $n=10000$ subintervals.
b) Write a user defined function to carry out this task with input parameters a, b and n. The value returned by the function should be the integral. Use Simpson's one-third rule

$$
I=\int_{a}^{b} f(x) d x \approx \frac{\Delta}{3}\left[\sum_{i=1,3,5, \ldots}^{n-2} y_{i}+4 y_{i+1}+y_{i+2}\right]
$$

as an approximation. Test your function for various values of n and find a large n^{\prime}, such that the final answer on your worksheet does not change for any $n>$ n^{\prime} up to an accuracy of 6 decimal places. The value for n^{\prime} does not have to be precise, just try to find the correct order of magnitude.
2) Use the Excel built-in function Goal Seek to solve numerically the following equations:

$$
\begin{array}{r}
110 x^{2}+1650 x-40040=0 \\
x^{3}-17 x^{2}+71 x-55=0
\end{array}
$$

