(Part II) Lab-session 5

1) Consider the following ordered pairs of data:

x-values:	2	4	8	11	16	19	21	27	29	31
y-values:	6	13	24	33	48	53	60	77	83	87

Show that these data are linearly correlated, that is the best fit function follows

$$
\begin{equation*}
y=\alpha x+\beta . \tag{1}
\end{equation*}
$$

a) Use the SLOPE and INTERCEPT functions to determine the coefficients α and β.
b) Use the LINEST array function to determine the coefficients α, β and the square of the regression coefficient.
c) Produce an XY chart with trendline to determine the same quantities.
d) Compute the residues $z_{i}=\alpha x_{i}+\beta-y_{i}$. Plot the z_{i}-values against the x_{i}-values. Are the values randomly distributed? Does this plot confirm that the data are linearly correlated?
2) For the following ordered pairs of data

x-values:	2	4	8	11	16	19	21	27	29	31
y-values:	6	18	60	109	235	340	421	738	840	1000

produce an XY chart with trendline. Show that these data are correlated via a cubic equation, that is the best fit function follows

$$
\begin{equation*}
y=\alpha x^{3}+\beta x^{2}+\gamma x+\delta . \tag{2}
\end{equation*}
$$

Determine the coefficients $\alpha, \beta, \gamma, \delta$.
3) Write a user defined array function called "MyRegression" which carries out the same computation as SLOPE, INTERCEPT and part of the LINEST array function. The input values are a set of ordered pairs of data. The function returns the coefficients α, β of equation (1) and the square of the regression coefficient. Test your function with the data of task 1 .

You can follow this outline for the program:
Function MyRegression(xdata, ydata)
\qquad declare here some variables...
Dim $\operatorname{tt}(5)$ (an array is declared this way)
(write here a do loop which computes the mean values according to

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

(write here a do loop which uses the mean values and computes

$$
h x y=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \quad h x=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \quad h y=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

Compute here:
the slope: slope $=h x y / h x$,
the intercept: intercept $=\bar{y}-$ slope \bar{x}
the square of the regression coefficient: corr $=h x y^{2} /(h x h y)$
Prepare the output as:
$\operatorname{tt}(0)=$ "Slope:"
$\operatorname{tt}(1)=$ Slope
$\operatorname{tt}(2)=$ "Intercept:"
$\mathrm{tt}(3)=$ Intercept
$\operatorname{tt}(4)=$ Correl:"
$\operatorname{tt}(5)=$ Corr
MyRegression $=\mathrm{tt}$
End Function

