City Universi
| ondon

Programming Excel/VBA Part II

Andreas Fring

general intro to excel (anatomy of the window)
absolute, relative and mixed referencing (A1,A$1,A1$,A$19)
functions (=F(...,.....))

lookup tables (VLOOKUP,HLOOKUP)

VB editor
user defined functions (UDF)

codes involving lookup functions
error messages

declaration of constants
declaration of variables

select case (if blocks)

Programming Excel/VBA Part II (A.Fring)

What are control commands?

is used when the loop terminates when a logical

condition applies, e.g. a mathematical statement such as x<11 or

the end of a data file is reached etc.
. Do {While|Until} condition
[statements]
[Exit Do]
[statements]
Loop

Programming Excel/VBA Part II (A.Fring)

In the the looping continues while the

condition is true.
In the the looping continues until the

condition is true.
terminates the looping.

Make sure you do not construct infinite loops.

In case this happens use: Ctl + Break to abort

Write a function which checks the following identity:

n

_ 1
;a_ n(n2+)

Function GSUM(n)

a=0

Do Untila=n+1
GSUM =GSUM +a
a=a+1

Loop

End Function

gives for instance: GSUM(112) = 6328 =112 *113/2

Do
GSUM = GSUM + a
If a=n Then Exit Do
a=a+1

Loop

Programming Excel/VBA Part II (A.Fring)

You can also nest DO...LOOP structures to
produce more complicated structures
. Do {While|Until} condition
Do {While|Until} condition
Do {While|Until} condition

Let‘s verify the identity

3370 =1p(1 4 P)(2 + p)

Function NEST(p) Function NESTSUM(p)
k=1 NESTSUM=p*(1+p)*(2+p)/6
Do Untilk=p + 1 End Function
n=1
Do Untiln=k + 1
NEST = NEST +n
n=n+1
Loop
k=k+1
Loop

End Function
NEST(p) = NESTSUM(p)

Programming Excel/VBA Part II (A.Fring)

1s used when you know in advance how many times
you want to iterate
. For counter = first To last [Step step]
[statements]
[Exit For]
[statements]
Next [counter]

- counter: number which counts the loops
- first/last: initial/final value of counter
- step: increment by which the counter is change in each iteration
Function GSUMNEXT(n)
Fora=1Ton
GSUMNEXT = GSUMNEXT + a
Next a
End Function

3" 2a = n(n+1)
a=1
Function GSUMNEXT2(n)
Fora=2 To 2*n Step 2
GSUMNEXT2 = GSUMNEXT?2 + a
Next a
End Function
gives for instance: GSUMNEXT2(112) = 12656 = 112*113

Programming Excel/VBA Part II (A.Fring)

In Labsession 11 you have already seen how to write a subroutine
(Macro) using the VBA editor. (not UDF)

Alternatively you can also create them with the Macro recorder.
In this way you do not need to know any VBA commands.

1) open a worksheet
11) select Tools — Macro — Record New Macro
= the record Macro dialog box opens up
Record Macro

Macro name:
|Sample,\'1acro

S_hor'tcut kew: Skore macro in:
Ctrl+|_ IThis Wiorkbook

Description:

IWrite here what the Macro is doing

OK I Caricel

11i1) enter Macro Name, e.g. “SumA1toA30*
- not all names are allowed, such as function names, special
signs in the name as !,?, blank,... are also not possible

1v) enter a letter for the shortcut key, e.g. “s*
v) store the macro somewhere, e.g. “This workbook*

vi) fill in the decription box, e.g. “sum up the cells A1:A30%

vil) Ok J, the recording is on. Now all actions you carry out on
the worksheet will be recorded and its code will be produced.

Record Macro

- [Macro name:
|5umaiToaz0

Shartcut key: ~ Store macro in:
CErI+Is_ IThis wéorkbaok,

Descripkion: :

Summs up the cell A1:A30

Cancel

Programming Excel/VBA Part II (A.Fring)

viii) For example:
Carry out an action which sums up the cells A1:A30
- select a cell in your worksheet different from column A

- write: “ The sum of the cells A1:A30 is: “
- select the adjacent cell and write: “=Sum(A1:A30)

- the effect of this is that in the cell in which you wrote
“=Sum(A1:A30)“ this sum will be displayed
- if a cell is empty its value contributes zero to the sum
- you can now change the content of A1:A30 and the sum
will be updated automatically
1x) - select Tools — Macro — Stop Recording
- alternatively in the window on the worksheet
select Stop Recording J

- if that window is now visible, you can make it appear by
selecting Edit — Toolbars — Stop Recording ./ 13

The recording has produced a VBA code, which alternatively

we could have programmed by hand:
Let’s see what we have just produced:

Select Tools — Macro — Macros <

= a window called Macros opens up
the window “Macro name* shows the name of the Macro

in case you have many Macros: select Options

2 c
e, to see the details of it

_uh

- (in case you do not remember)
| - Select Edit J
SRS — the code we have just
Al produced will show up

Macros in: AII Open Workbooks J Options..

Description

Programming Excel/VBA Part II (A.Fring)

- ExplLect2 xls - Modulel [Code)

(Genera 1) ~| [sumattonss -

Sub SumA1toA30() Sw swmaizerol] -
' Sumlltol30 Macro
' ' sum up the cells A1:430
' Kevhoard Shortout: Ctrl4s
' SumA1toA30 Macro Range ("F127) seleos
ActiveCell.ForwulaR1Cl = "The sum of the cells Al:A30 is
R (TI127] . Sel
' sum up the cells AI:A30 A::?iecall.Fnr;uii;lCl = "=3UM{R[-11] C[-8] :R[18] C[-B])"
End Sub
U = | o

' Keyboard Shortcut: Ctrl+s
'
Range("F12").Select
ActiveCell. FormulaR1C1 = "The sum of the cells A1:A30 is:"
Range("'112").Select
ActiveCell.FormulaR1C1 = "=SUM(R[-11]C[-8]:R[18]C[-8])"
End Sub 1 5

1) Select Tools — Macro — Macros
= a window called Macros opens up
the macro‘s name appears in the window “Macro name:*
- in case you have more than one, select the one you want
Select Run

— what you have recorded before will be executed now
11) Use the shortcut:

- our example just: Ctl + s
111) If you were editing the code:
Select »
= a window called Macros opens up = 1)
iv) Using customized buttons or other objects:
- we have to see first how to create those (see point 4):

15

Programming Excel/VBA Part II (A.Fring)

We calculate once more

- first you have to fill in: 1—-A1,2—A2,3—A3 ... 30—>A30
- you can do this by hand, but the faster way is to use “Series*:
- put 1 into cell Al:
- select Edit — Fill — Series
= a window called Series opens up
- Fill in: Series: e Column

. Eties in Type ate unit
Type: [) Llnear Rows * Linear & Day

* Columns " Growth Weekday

. " Date £ Manth
Step Value' 1 = AutoFil € Year

Stop Value: 30 Step walue: Il— Stop value: ISD—
Cancel_|
- activate the Macro = The sum of the cells A1:A30 1s 465 1 7

Select Tools — Customize — Toolbars — M Forms — Close.l

Customize

Toolbars | Commands I Options I

Too\'bgrs:

v’ Standard Hew, ..
V' Formatting -

I 3-D Settings Remame. .. I
™ Eorders
I Chart |
DElEt
™ Chart Menu Bar i
Attach...

Drawing Canvas
I Exit Design Mode
[External Data

Formula Auditing
™ Full Screen
I COrganization Chart

Aeab] [0 |F @ EBER B

Programming Excel/VBA Part II (A.Fring)

- Select Button (a grey box)
— select a cell in your worksheet

= the “Assign Macro* window opens up
G H

il Ascign Macro EEI
* Macro name: i

| [sumaltoazo =
Cancel

[ew | E
Record... |

Macros in: Al Open Workbooks

Description

— select the Macro which you want to attach to this button,

e.g. SumA1toA30 — Ok
= it says now “Button #* on your button 1 9

- Selecting now this button will activate the Macro you have
attached to it, e.g. SumA1toA30

« attach a better text to the button:
- select the right mouse button (moving first over the button)

= a variety of commands opens up:

— select Edit text T <
-+ 2 Copy
— type a meaningful text onto the button, LS
| Edit Text
e.g. Sum Al tO A30 I Grouping »
. . Order 3 i
: | : | Assign Macro. .,
% Format Contral...

* change the size of the button:
- select the right mouse button (moving first over the button)

— select Format Control 2 O

Programming Excel/VBA Part II (A.Fring)

* change the size of the button:

- select the right mouse button (moving first over the button)

— select Format Control J

— Alignment
Fomat Contiol

I Margins | Yieh | Properties | Margins I wieh I
Alignment I Size | Pratection Font Alignment | Size I Pratection

Font: Font style: Size: Text alignment rientation
I.C\rlal IStandard |1E| ’V Horizontal: | Center - Text

" ko4 - r Al

Tgrminal Kursiv el Wertical: Center = |T |7 |7

H Tirmes Mew Roman 1 |Fett o Wl

I Times Mew Roman Speci;l Fett Kursiv _'I 11 _'| : é %
Underline: Colar: i t
INone j I Automatic j ¥ hormal fank

Frect: T

™ strikethrough

[Superscript | AaBbCcYyiz ight-ta-left

™ Subscript ’—Rlext direction: ICDntext =

This is a TrueType Font. The same Fork will be used on both vour printer
and your screen.

— M Automatic size — Ok 2 1

« similarly you can change the writing direction, the text fonts,
the text and button size, the margins of the button, the colour,
the status of the protection, etc.

Sum of A1 to A30

* You can also assign Macros to other objects:

- the M symbol from the forms toolbar [Bamorai s
- a text label Aa on the forms toolbar

- other symbols from the forms toolbar D
- a picture you have imported before such as

(Select Insert — Picture — From File or Clip Art — choose a picture)

Programming Excel/VBA Part II (A.Fring)

Numerical Methods with Excel/VBA:

* Many problems in Mathematics, Physics, Economics, etc can

only be solved in very idealized situations in an exact analytical
fashion. Even solvable problems can often only be tackled with

great effort.
* Numerical methods often lead to solutions which are extremely

close to the correct answers. They lead very often quickly to some
insights.

* Especially with the advance in computer technology, in terms of
speed and storage capacity the limits of what can be computed

are permanently pushed.
* Here we only have a glimpse at some methods to get an idea what

could be possible and to apply the programming structures we

23

have learned so far.

» Numerical Integration

b
* Recall: I = j Ax)dx = area below the curve f(x)

f&=) .
P A=RX, 'Xi)(yi+1+39/ oy

- Idea: approximate the integral by sums over trapezoidal areas :

H
I=~ ZAI-
i=1

24

Programming Excel/VBA Part II (A.Fring)

- Take the subdivision of the domain [a,b] to be evenly spaced:
Xigl —Xi = b%a =A

— Trapezoid rule for integration:

I = A|:%(yl +yn+1) + Z;yl) :|

* Let us write a module (program) for this:

- Input: a = lower integration limit
b = upper integration limit
n = number of subdivisions
some function f(x) which we want to integrate

- Output: approximate value for the integral

25

Sub Nln t () -"-:_xls - Modulel Nim j
a=0 Sub N_ilm i =
b=5 3
n =100 o i b e /2
h=(b-a)/n L e e s w1 s
I=h* (f(a) + f(b)) / 2 Endﬁgi‘éewaa--; alue - I
Form=2Ton ;.

I=I+flat+h*(m-1)*h el i
Next — of
Range("B3").Value =1

End Sub

Put the result onto the Excel sheet into the cell B3
Function f(x)
f=x"4
End Function
26

Programming Excel/VBA Part II (A.Fring)

3
* Example 1: J'x4dx = % (5) = 625
0

- The program gives:

= 10 I = 635.4063
= 100 I =625.1042
= 1000 I =625.0010
= 10000 I = 625.0000104

= 03 8 0=

* Example 2: z
J.sin(x)dx = —cos(x)|; = 2
0

- Generate the m by 4 Arctan(1). In VBA this is written as 4 *Atn(1).

- The program yields:
n=10 I =1.9835

n =100 [=1.999836
n=1000 [=1.999998

27

- So far we could have solved the intgrals also analytically, but not the
next integral.

* Example 3:

J. Smf) dx = Sinus Integral function

T

[9 e ~ 1.85194
0
- How do we deal with the lower bound a=0? This is well defined

analytically, but the computer can not handle 0/0, if we don‘t
specify how to do that. Recipe: Just take the lower bound a to be a
very small number, e.g.a=0.0000001.
- The program yields:
n =10 I =1.8493
n=100 [=1.851911

n = 1000 I - 1.851937
28

Programming Excel/VBA Part II (A.Fring)

 Example 4: Iexp(—sz)dx - < E Errorfunction(xy2)
[exp(-2x?)dx = [~1.25331

- How do we deal with infinity? Introduce a cut-off at some value
large enough such that the mistake is small. This is possible because
the integrant falls off sharply after certain values:

- Compute instead: J'S L eXp (—2x)dx

- The program gives: n=10 1=1.27134
n=100 I=1.253314
n=1000 [=1.2533 20

« Different types of methods:
- Simpson‘s 1/3 rule (based on three adjacent points):
b n-2
I = {ﬂx)dx ~ %Ll;’_")’i + 4y +y.f+2:|

- Simpson‘s 3/8 rule (based on four adjacent points):

b -3
1= If(x)dx & %A|: Z Vi+ 3Vl + 3Van +yi+3:|

=147,...

- Runge-Kutta methods, Monte Carlo integration,...
- Here we do not derive these rules, but just take them as facts.
See a different course on numerical methods for details.

- Let us implement the Simpson‘s 3/8 rule as a user defined function

- Implement the Simpson‘s 1/3 rule in Labsession 3. 3 O

Programming Excel/VBA Part II (A.Fring)

Function Nintff(a, b, n)
h=(b-a)/n

[=0

Form=1Ton-2 Step 3
[=1+ (f(a+th*(m-1)) +3* f(a+th* m) +3* f(a+h*(m+1))+f(a+h*(m+2)))

Next

Nintff=1*h *3 /8
End Function

* Example 1: 2 [sin(x) exp(-x)dx = 1
0

- A problem here is to find a good cut-off for the upper limit.

= b=107?
z S 10 3 1
- Compare different integration methods:
bh=10 Trapezoid: 153 Simpson 3i8 Simpson
n=10 0.83920049 097383313 0.93930204
n=100 0.59839888 1.00006056 1.00006255
n=1000 | 1.00004637 1.00006279 1.00006328
n=10000 1.00006265 1.00006279 1.00006284
h=20 Trapezoid: 153 Simpson 3i8 Simpson
n=10 043524312 0.61641151 0.49069239
n=100 0899334224 0.99996411 0.9999185
n=1000 | 099993333 0.99999999 0.59999999

n=10000 0.99999933

1

1

- In this example we introduce an additional error though the

cut-off.

- When the subdivision of the interval is large enough the three

methods are almost equally good.

32

Programming Excel/VBA Part II (A.Fring)

* Limitations:

- The speed of the computer.

- The accuracy of the numerical method used. (In principle there
exist procedures to estimate the errors made.)

- The accuracy of the computer, i.e. in computing functions used
in the program and variables employed such as single or double
precision.

- Various other approximations such as division by zero, cut-offs

for lower and upper bounds etc.
« There exist different types of numerical methods for other

mathematical problems, such as solving polynomial equations,
solving differential equations etc.
» Some methods are implemented in Excel as Built-in functions:

33

» Goal Seek
* Goal seek is a numerical routine implemented in Excel in form

of a built-in function. It canbe used to solve equations.
* Usage: select Tools — Goal Seek .! — a dialog window opens

- Set cell contains the left hand side of
el THE——"! | an equation you want to solve

Ta walue: I X .
sychangnacel. | = | - 10 value contains the RHS of the equation

o | camt || -BY changing cell contains the variable

of the equation
« Disadvantage: You have to guess a value near the answer.
- Example: Solve the equation: 2x2-9x-5=0
(We expect to find: x,=-1/2 and x,=5)
- Type into the cell C3: =2*B3/2-9*B3-5
- Type into the cell C4: =2*B4"2-9*B4-5 34

Programming Excel/VBA Part II (A.Fring)

- Type into the cell B3 some starting value, e.g. -10
- open the Goal Seek dialog box and fill in

Goal Seek 7]

Set cell: fic] 5

To walue: ID
By changing cell: |B3| q‘]

QK I Cancel |
_ OK ‘J 3 Goal Seek Status EE3
Goal Seeking with Cell 3]
found a solution.
Cancel |
Target value: o
Current value: 1,912E-07 StEp, |
False |

- The cell B3 and C3 have changed to -0.5 and 1.912E-07
- Repeat this process for the cells C4 and B3 to find the other
solution. (You need a new guess for the starting value.)

« A more sophisticated method is the Excel Solver. 35

Charts (Graphs):

* Charts are ways to display data in a graphical way.
- Excel offers various types of charts, such as column, bar, pie,

XY, area, doughnut, radar, stock, cylinder, cone, pyramids,...

Chart sub-type: Chart bype: Chart sub-type:
[kl Column -
Bar
M Il ==
>
ﬂ | il[-.'r, |_ ¥ (Scatter) O D

hly Area QZE
@ Deughr m Illll.ll, D |o oo »
iy Radar — iy Radar
el Surface @ (@ Surface
@ Bubble ®: Bubble
g Stock. =l g Stock. =
Chart type: Chart sub-tvpe: Chatt type: Chart sub-type:
B Fie = B Fie |
|_ WY (Scatter) Q E |_ ¥¥ (Scatter) m
e | b v
@ Doughnut @ Doughnut
iy Radar ’ iy Radar
e Surface @ B 5 Fl Surface g
s Bubble ®: Eubble
5 Stock g Stock.
' Cylinder ' Cylinder
i Core & o 3 6
‘ Pyrarid = ‘

Programming Excel/VBA Part II (A.Fring)

- Here we want to learn more about the most common types:
XY -charts (scatter) and line charts.

Chart type: Chart sub-type: Chart type: Chart sub-type:
- ko, - (ad Column B
® B Gar
@ Fie
|_ w¥ (Scatter)
}{2/ m iy 2rea
@ Doughnut

@ Radar 2
W | Surface @
>{>ﬁ ®: Bubble
i Stock. =l
- XY charts are used to plot ordered pairs of numerical data, e.g.
from a scientific experiment, mathematical functions, etc.
- Line charts are used when the x-values are textual, e.g. month of
the year, names of people or companies, places, etc.
- These two types of charts should not be confused with each
other, as their display is quite different, which is not suggested
by their names

- Example: 37

Xv¥-Chart We plot the data:
35 |
30
i 20 4
=
= 15
10 4
Ll = T T T J
a 5 10 15 5 20 5 %11 5
Line chart
o
1®

Programming Excel/VBA Part II (A.Fring)

1) Creating an XY/line chart:
1) open a worksheet
i1) select the data you wish to display, e.g. cells A1:B30
- in particular we want to see here how to plot a function f(x),
e.g. the x are in A1:A30 and the f(x) in B1:B30
111) open the chart wizard = a series of 4 dialog boxes open up

Chart Wizard - Step 1 of 4 - Chart Type ﬂ u

Standard Types I Cuskom Types |

chatt type: Chart sub-type:

lad Column E P .

= Bar e, .

ot e f i * specify the type and the

@ Fie

E --) sub-type of the chart

ol
iy Radar _
% ;E::;I:e : » ‘ 3 % NeXt 4J

L5l Stock =

Scatter with data points connected by
moothed Lines without markers.

Press and Hold ta View Sample | 3 9
@! Cancel < Back I Mext = I Einish |

ST = T (AT = ST TSRS+ S| | T
| [S C _o_sgx)Egg(:}s)_.Trigonometric functions
2 i
I 0.1 0.500317)
4| 0.3 0707730678 3 Dat =
Bl o5 os3zEors 1 ———— Az
6 | 0.7 0.37980939) DataRange | Series |
[iEQ) 0.9 0.252727753)
8| 1.1] 0.150939033 12
9 1.3 0.072901935) 1
0| 1.5 D.015783603) o
i 1.7 -0.023537 766} e b
12| 1.9) -0.040353974) o — St
13} 21| -00B1E21651) N
14 2.3 -0.06EA00063) o2
15 25| -0.065761673) ° e
1B | 2.7 | 00607586324 02
7 2.9 0053426245
18 3.1 0045010242
18 3.3 -0.036421382} Datarange: [—sheetlifag2:§e4at]
20| 3.5) 0.0262765424 e
7| 37| 0020958024} Sres in: o
2| 3.9 -0.014694257 & Columns
[4.1/ -0.009526371)
24 4.3| 0005438267}
25 4.6 000234173
26| 4.7 0.000112678)
27 49| 0.00138868
28| 5.1/ 0.002304435)
%g_. gg gggg;gg?;?: @ Cancel | < Back | Mext = I Einish |

L}

30 5 0. !
31 57 000273232 . P R
2| =9 oomsaree verify that the data range selected 1n 11) 1s ok 4
33 6.1 0.002205341)
2 rannmerest — Next .

Programming Excel/VBA Part II (A.Fring)

Chart Wizard - Step 3 of 4 - Chart Dptions [l E3|Chant Wizard - Step 3 of 4 - Chart Options

Titles | Bies | Gridlines | Legend I Diata Labels Titles I Axes Gridlines | Legend | Data Labels
Chart title: Value (yaws
Trigonametric function Trigonometric function ™ Major gridines Trigonometric fu
Yalue (%) axis: 1.2 I Minor gridines 5
¥ - . Value (fiaxis ————————— | _ 1
Walue () axis: A i £.08
Et £ ooe \ £ ooe
|cns(x) Expi-) o I'\ — Teriest]
" o04 B oos
Second category () axis! § 02 \ 3 0z
o 0
Second value (V) axis: 0z & 5 B 02 2 +
x
@l Cancel | < Back | Mext > I Einiish | @l Cancel | < Back I [e
* specify the titles, axes, gridlines, legend, etc — Next J
Chart Wizard - Step 4 of 4 - Chait Location EHE
Flace chart:

" As new sheet: lChartl
Fopsgbiectin S -

Cancel | < Back | et = | 'Em?l
» specify the location where the chart should stored— Finish 4 1
= a chart will appear in the location you specified

* For instance, if in some column (row) we had had some (densely
enough) distributed x-values and in some other column (row) the
corresponding values sin(x), we could have produced

chart area plot area

sinix)

* Most likely the design would not have been of this type,
therefore =»

42

Programming Excel/VBA Part II (A.Fring)

2) Modifying a chart:
* you can change the design of the presentation by selecting the
objects you wish to modify
1) Formatting the plot area
- by default the plot area will be grey
- select the plot area = the “Format Plot Area* window opens

- use it to change the colours of the background, frame, etc.
i) Formatting the data series

- select the line = the “Format Data Series* window opens
- use it to change the line pattern, data labels, error bars etc.

Faema Data Sesios K
Dida Loy | Saeies Order | Oelions Dt Lo | Series Orger | Gptions. |
pate || s | dEmerbws | ¥Emorbas Patteens | ks whmorss || VEmorBas
e Markar Quplay
& futomatic " degomatic
© toe & ere | sl - | || - -
e e Bth P Mo b
v | e o —
Coker: Audomatic 7] Eoreground: HoCeke = £ Froed vahug: 2 E|
yeote: [A sowoame [woce P H Bl
S orderd devistionls): |1 |
g [3 o5 T Staredied geree
Sample. = I Gtom + =]
- \i
oo = 43

1i1) Formatting the axis
- select the axis = the “Format Axis* window opens
- use it to change the axis pattern and scale

Format Axis 7]

Format Axis E
et | scale | Font | mumber | algnmert | Patterns [5cale | Font | mumber | algnment |
Lnes | [Majortickmarktype e
= automatic " Nane 1% Outside
€ tione Conside Cross 'qr“_m) —
e e e] v Miirnmn:
Style: 7 rMinor tick mark bype ¥ Maximum: 5
a ((i Mong (f: Qutside 7 Major unit: 2
: ic = Inside Cross
S W
Weights | mem Tick matk labels——————————— ¥ value () axis
" Mone { High Crossesat: [o
Sample | € Low % Pexk to axis
Display wniits: Mane: -] W show display units label on chart
™ Logarithmic scale
I Walues in peverse order
T Walue (¥} axis crosses at maximum value

= Ty

1v) Modifying the chart options
- right select the chart area = Chart Options
- use it to change titles, axes properties, gridlines, legends
and data labels 44

Programming Excel/VBA Part II (A.Fring)

v) Dynamical titles and axis labels
- the data are already linked in a dynamical way to the chart,

this means if you change them the plot will change as well
- you can also do this with the title and axis labels

- type some text into a cell, e.g. “sin(x)* into F1

- select the title or an axis label

- type “=* into the Formular bar

- select again the cell where you wrote the text, e.g. F1

= in the Formular bar the location of your text appears,

e.g. =Sheet1!F1
- select the “v"“ to complete the process
= Now, whenever you update the selected cell, e.g. F1,

the text inside the chart will change accordingly
vi) Changing the default setting

- you might have a preferred chart style and if you do not/ 5

want to repeat the previous steps use this style as default
- select the chart — Chart — Chart type I Select as default

3) Data input:
* There are various ways to fill in the cells with data:

1) You can fill in the data the pedestrian way by just typing them
11) The data might be stored externally on some file resulting

for instance as output from another program.
- Importing the data:
- select a cell on your worksheet for the first value
- select Data — Get External — Import Text File ./
= Text Import Wizard opens with a series of 3 dialog boxes
- answer questions about data and file type
- modify the field width
- select the data format — Finish

- confirm the location where the data should be stored
1i1) Use the fill function (see lecture on Macros)
iv) Use a VBA program to fill in the data
- see for instance Lab-session 1, task 4 4 6

Programming Excel/VBA Part II (A.Fring)

4) Data handling:
» Adding data to an existing chart:
- plot area — Source data — Series — add — X/Y values, name

— Ok
» Data — sort = arrange selected data alphabetically, by data or
numerically in ascending or descending order

» Data — filter = allows to filter out certain data based on their
location
» Data — validation = allows to filter certain data based on a
criterion you define, e.g. a certain range

» Data — subtotals = computes totals and subtotals for selected
columns and inserts them into the sheet

» Data — text to columns = allows to change the data type

43

Programming Excel/VBA Part II (A.Fring)

5) Curve fitting:
* On many occasions one has sets of ordered pairs of data

(X1, ...,Xs, V1,...,ya) Which are related by a concrete function Y (X)
e.g. some experimental data with a theoretical prediction

» suppose Y (X) is a linear function
Y=aX+ B

- Excel offers various ways to determine o and [3

1) SLOPE, INTERCEPT - functions
based on the method of least square

mng::[yi—w + ox))]

SLOPE(ys,...,ys X1, ... Xa,) — O
INTERCEPT (y,...,ys X1, ... X0,) —

49

- How does Excel compute this? (see other courses for derivation

Xi Yy :1ﬁ Zyi

n
i=1 i=1

‘sloper g — 3 (%) (yi—y)/é(xi—)'()z

n
i=1

- mean values: X :%

- intercept: B=Vy-aX

- regression coefficient:

r = é (Xi_)_() (yi _y)/\/é (Xi_)_()2 é (yi_g/)2

A good linear correlation between the x: and y: -values isr = 1.

With VBA we can write a code which does the same job,
see Lab-session 5 of Part II. 50

Programming Excel/VBA Part II (A.Fring)

i1) LINEST - function
this function is more sophisticated than the previous one

LINEST(ys,...,ya X, ...,Xs, cOnStant statistics)
- if constant = TRUE or omitted the intercept is computed

otherwise it is zero
- if statistics = TRUE the function returns regression

statistic values with the output:

slope intercept
p ~ ! p

standard error in the stanldard error in the
slope intercept

r-squared standard error in the y
i T~ \estimation

- we restrict ourselves here to 5 1

- notice that LINEST is an array function, such that you have
to prepare for an output bigger than one cell:
- select a range for the output, e.g. 2x3 cells
- type the function, e.g. =LINEST(.....)
- complete with [Ctrl | +(Shift) + Enter]

ii1) adding a trendline
- this option also works for nonlinear, logarithmic, exponential
... correlations between the x- and y-values

- choose an XY-chart with the subtype which has no line

- right click any of the plotted points
= Add Trendline windows opens

- select the type of correlation, e.g. Linear, polynomial, ...
- in Options decide if you want to add the computed equation
the r-squared value etc on the chart

Programming Excel/VBA Part II (A.Fring)

Example:
Consider the data:

2 0,4
4 1,2

‘ _ 6 2,3

assume linear correlation: 8 4
10 5

slope — 1.1903 12 8,3
) 14 1
intercept — -4,4933 16 14,1
18 17,9

20 21,8

/with trendline adding

looks more or less
15 2 x linear?

| 53

Compute the residuals, i.e. (the predicted values - the given ones):

(1.1903 xi - 4.4933) - yi — | 2512727
0,932121

5 -0,34848
* . -1,02909
-2,4097
! % . -1,4903
. -1,17091
1] 15 b1} = -0,45152

Lt 0,967879

§ \ 2,487273
-

3

not random!

y = 00635 + 0007 + D24
R =) 5087

—quadratic fit is better!

54

Programming Excel/VBA Part II (A.Fring)

Object Oriented Programming

» Premise: Everything we know in the Excel universe can be
described as objects.
- There are about 200 objects in Excel.

- Our aim 1s to learn how to use them in VBA.
» objects can have names

syntax: object(“name*

Expl.: Workbook (“Labsession5.x1s%),
Worksheet(“Sums*), Range(“trigdata*),

Range(“A1:A25%), ActiveCell, ActiveSheet,....

» objects can be used as object variables
Expl.: Dim WB as object

Set WB = Workbook (“Labsession5.x1s*)
similar as the variables we already know, we can 55
use WB instead of Workbook (“Tabsessions.x1s)

» objects are arranged to each other in a strict hierachy
Excel application — workbook — worksheet — objectX
— objectY — ...
« this hierachy has to be respected in the VBA syntax, e.g.
workbook(“book1.x1s*).worksheet (“sheet]1*).objectX.objectY

é not: worksheet (“sheetl*). workbook(“book1.x1s%)....
* when referring to an object which is in an active workbook or

sheet, you do not need to specify the entire hierachy
Expl.:

Range(“A1%)

» when it is in a non-active workbook and worksheet, you need to

refer to the entire hierachy
Expl.:

workbook(“book1.x1s*).worksheet (“sheet]“).Range(“A1%)

56

Programming Excel/VBA Part II (A.Fring)

» the WITHEND WITH short hand
- this 1s a useful command which allows to avoid long hierachies
syntax: WITH objectX
.objectY
.objectZ
END WITH

Expl.:
workbook(“book1.x1s*).worksheet (“sheet]1*).Range(“A1°)
workbook(“book1.x1s*).worksheet (“sheet]*).Range(“B25%)
workbook(“book1.x1s*).worksheet (“sheet]*).Range(“‘data*)
instead: WITH workbook(“book1.xls*).worksheet (‘“sheet1*)
.Range(“A1%)
.Range(“B25%)
.Range(“data*)
END WITH 57

Programming Excel/VBA Part II (A.Fring)

» the methods (functions) are actions the object can initiate

syntax: object.method [parameter := parameter value]

Expl.:
Range(“A1:D4%).Copy
(copies the content of the cells A1 to D4 on the active worksheet)
Range(“A1:D4%).Copy destination:=worksheet(‘“T*).Range(“C5*
(copies the content of the cells A1 to D4 on the active worksheet
to the cells C5 to F8 on the worksheet named T)
» objects can change their properties as a reaction to an event

syntax: object.event

Expl.:
worksheet(“T1).Calculate
(the object worksheet named “T1* is re-calculated and
changes its properties)

59

» the object browser provides you with the details of the properties,
methods and events associated to particular objects
- it 1s activated in the VB editor
- view — object browser or with the function kev F2
Classes Merbers of Workbook
Excel S REiE | 2l jeg ActiveChart -
[—— = . ey
o #4) % 1 workbooks =1 |e8 Application =l
Search Results - -
Library [Class [Member Property ActiveSheet As Object j
read-only
Member of Excel Workbook
E
|Classes Members of YWorksheet'
|Classes Members of Worksheet' MW e VFapeBreaks :J
& VPageBreak Bl scrp E| 21 wiorksheetFunction — |=% Activate =i
& VPageBreaks & Scrollarea B Worksheets = |=® Calculate -
& wialls ' Shapes Class Worksheet
& watch 5! SmartTags Member af Excel
Bl watches & StandardHeight
21 webOptions e8! Standardiidin
1 window eH Tah
& windows e& TransitionExpEval | Clagses hembers of Warksheet'
2 wiorkbook E& TransitionFormEntry B Windows 2| |-& chowDataForm |
& wiorkbooks 5 Tyne
Porksheet B UsedRange K23 Warkhook <% Unprotect
21 worksheetFunction & Visible & Workhooks = F# Activate
21 worksheets PH VPageBreaks # BeforeDoubleClick
=P Constants =@ Activate i} £ BeforeRightClick il
SE LA alieodinalntoen ot o L@ calenlatn
T B Waorkshests =|| # calculate =l
Member of Excel Sub Activate() 6 0
Member of Excel Worksheet

Programming Excel/VBA Part II (A.Fring)

- clicking the question mark in the browser you can find out about

the properties, methods and events related to an object:

worksheet Object

See Also Properties isitaais T

Activate Event

- - - | BeforeDoubleClick Event
_ | BeforeRightclick Event

Calculate Event

Change Event

Deactivate Event

FallowHyperlink Event

PivotTablelpdate Event

SelectionChange Event

Represents a worksheet,
Waorksheets collzction,
Worksheet objectsin a

Using the Worksheet Object

The Following properties For returning a Worksheet object are described in
this section:

+ Worksheets property
s ActiveSheet property

whorksheets Property

Use Worksheets{indax), where indexis the workshest index number or
name, ko return a single Worksheet ohject. The Following example hides
worksheet one in the active workbook,

Worksheetsz (1) .Visible = False

The workshest index number denotes the positian of the worksheet on the
workbook's kab bar. Worksheets (1) is the first (leftmost) worksheet
in the workbook, and Worksheets (Worksheets.Count) isthe

- Show &ll =
Columns Property
See Also

Applies To Example

P Colurns property as it applies to the Application objsct.
I Columns property as it applies to the Range object.
P Columns property as it applies to the WorkSheet objsct,

For information about returning a single member of a collection, see
Returning an Chiect from a Collection,

Remarks

Using this property without an object qualifier is equivalent to using
ActiveSheet . Columns,

when applied ko a Range object that's a multiple-area selection, this

property returns columns From only the first area of the range. For

example, if the Range object has two areas — A1:BZ and C3:D4 —
Selection. Colunns . Count returns 2, not 4, To use this L
property on a range that may contain a multiple-area selection, test

Areas. Count to determine whether the range contains mare than ane
area, If it does, loop aver each area in the range.

Example
This example Formats the font of column one {column A) on Sheetl as bold,

Worksheets ["3heetl1l™) .Columns (1) .Font.Bold = Tru

This example sets the value of every cell in colurn one in the range narmed

"myRange” to 0 (zera), 6 1 |

» objects can be organized in collections

- members 1n same collection are on the same hierachical level

- you refer to a member of a collection just by a number

syntax: collection name(#)

Expl.:

worksheets(5) refers to the 5-th member in the worksheet collection

workbooks(3) refers to the 3-rd member in the workbook collection

names(6) refers to the 6-th member in the name collection

hyperlinks(1) refers to the 1-st member in the hyperlink collection

- note: worksheets # worksheet , names # name, etc

- collections can be created by using the add-method

syntax:

collection name.add [parameterl:= parameter value 1], [:=]

62

Programming Excel/VBA Part II (A.Fring)

Examples:
« x=3.141592653589793
y = true (the variables can be of different type)
z = “too many names‘
Names.Add Name:="pi", RefersTo:=x
Names.Add Name:="correct", RefersTo:=y
Names.Add Name:="message", RefersTo:=z
- you can refer to a member of the names collection as:
- Names(2) — true in the VBA code
- correct — true on the Excel sheet
* WITH worksheet(1)
.Hyperlinks.Add .Range(“B25"), http://www.city.ac.uk/

END WITH
Range(“B25").Hyperlinks(1).Follow NewWindow:=True

- inserts a hyperlink into cell B25 and executes it thereafter 63

Interactive In and Qutput
» We have already seen how to transfer data between the
spreadsheet and VBA programs, by writing into cells and
reading from cells:
* VBA program — spreadsheet
Range(“A1%).value =2
(puts the value 2 into cell A1)
* spreadsheet - VBA program
x = Range(“A1*).value
(assigns the value of cell Al to the variable x)
» Now we look at another useful technique, using message boxes.
« this is useful when you write a code for a user, who does not
know about the VBA code, as you can provide more

information 6 4

Programming Excel/VBA Part II (A.Fring)

» Message box:

« displays a message in a dialog box and returns an integer value
which depends on the answer of the user

syntax:

return = MsgBox(prompt [, buttons] [, title] [, helpfile ,context])

* Or:

- parameters in [] are optional, i.e. you don‘t have to specify them

- when you omit the optional parameters you have to include the ,

syntax:

return = MsgBox(prompt:= “...* | title:=* ...*] ...))

-now you do not have to include the commas

- we will not treat here the helpfile and context option
(they allow to display some help information) 65

prompt = string expression, the text displayed in the dialog box
(maximal 1024 characters)
title = string expression, the text displayed in the title bar of
the dialog box. When omited, it is the application name.
buttons = a sum of several values specifying:

(a) the number and type of buttons:

Constant Value | Description

vbOKOnly 0 OK button only
vbOKCancel 1 OK and Cancel
vbAbortRetrylgnore |2 Abort, Retry, and Ignore
vbYesNoCancel 3 Yes, No, and Cancel
vbYesNo 4 Yes and No
vbRetryCancel 5 Retry and Cancel

66

Programming Excel/VBA Part II (A.Fring)

(b) the icon style

vbCritical 16 Display Critical Message icon
vbQuestion 32 Display Warning Query icon
vbExclamation 48 Display Warning Message icon
vbInformation 64 Display Info Message icon

ity University B8 |[City Universiy |

Q This i a critical message icon: @ This iz a warning query icon: & This iz a warming meszage icon: @ This is an info mes

(c) the default button

(this is the button selected when you just press return)
vbDefaultButton1 0 First button is default
vbDefaultButton2 256 Second button is default
vbDefaultButton3 512 Third button is default
vbDefaultButtond | 768 Fourth button is default 67

(d) the modality of display

vbApplicationModal 0 The application stops
until the user responds

vbSystemModal 4096 whole system stops
until the user responds

vbMsgBoxHelpButton 16384 adds Help button
VbMsgBoxSetForeground | 65536 MsgBox is foreground
vbMsgBoxRight 524288 Text is right aligned
vbMsgBoxRtIReading 1048576 | text right-to-left

- select maximal one number from each of the groups (a) to (d)
- you can either use the Excel constant name or the number
e.g. buttons :=3 + 32
buttons := 35
buttons := vbYesNoCancel + vbQuestion 68

Programming Excel/VBA Part II (A.Fring)

return = a number between 1 and 7 which depends on the answer

- you can either use the Excel constant name or the number

Constant Return value Selected button
vbOK 1 OK

vbCancel 2 Cancel
vbAbort 3 Abort

vbRetry 4 Retry
vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

- e.g. if the OK button is selected return has the value 1 or vbOK

69

» Examples:
Sub message1()

MsgBox ("Do you know how to view pdf files?")

End Sub
or: ret = MsgBox(Prompt:="Do you know how to view pdf files?")

Sub message?2()
prompt = "Do you know how to view pdf files?"
title = "Programming Excel/VBA PartII"
ret = MsgBox(prompt, , title)

End Sub
= displays a message box with OK button

prompt: Do you know how to view pdf files?
title: Microsoft Excel (in messagel)

title: Programming Excel/VBA Partll (in message2) 70

Programming Excel/VBA Part II (A.Fring)

Sub message3()
ret = MsgBox(prompt:=pr, Buttons:=3, Title:=ti)

End Sub
= displays a message box with Yes/No/Cancel button

Sub message4()

bu = vbYesNoCancel + vbQuestion

ret = MsgBox(prompt:=pr, Buttons:=bu, Title:=ti)
End Sub

= displays a message box with Yes/No/Cancel button and

question mark icon (warning query icon)

71

Sub message5()
pr = "Do you know how to view pdf files?"
ti = "Programming Excel/VBA PartIl"
111:
ret = MsgBox(prompt:=pr, Buttons:=35, Title:=ti)
If ret = vbYes Then (or: ret = 6 then)
ret = MsgBox("Good, you can print the lecture material", 48, ti)
Elselfret = vbNo Then (or: ret =7 then)
ret = MsgBox("By now you should know!", 16, ti)
Else
ret = MsgBox("Either you know or you don't. Decide!", 32, ti)
GoTo 111
End If

End sub 72

Programming Excel/VBA Part II (A.Fring)

» Goto command:

« forces the program to go to a certain position

syntax:
position:

Goto position

or:

syntax:
Goto position

position

é make sure can get out of this loop!!!!

73

» Input box:
« displays a prompt in a dialog box, waits for the user to enter a

text or click a button, and returns a string containing the
content of the text box

syntax:
return = InputBox(prompt [, title] [, default] [, xpos] [, ypos])

default = a default output value

xpos/ypos = horizontal/vertical distance of the left/upper edge of
the dialog box from the left/top edge of the screen.

return = string containing the content of the text box

74

Programming Excel/VBA Part II (A.Fring)

Arrays/Array functions

» Arrays are VBA variables which can store more than one item.

- the items held in an array are all of the same variable type
- one refers to an item by the array name and a number

syntax: declaration: Dim Name(number)
usage: Name(x) where 0 < x < number

- by default the indexing starts at 0
- Expl.: an array with three items named A
declaration: Dim A(2)

usage: A(0)=5
A(l)=3
A(2)=6
note: A(3) 1s not defined 75

* You may change the index set from its default value

syntax: declaration: Dim Name(x to y)

usage: Name(z) where x<z<y

- Expl.: an array with three items named A
declaration: Dim A(8 to 10)

usage: A8) =5
A0) =3
A(10)=6
note: A(6), A(7), A(11), A(12), ... are not defined

* Alternatively you can also use the array function

syntax: declaration: Dim Name as variant

usage: Name = array(x,y, ...,Z)

- the indexing starts at zero, i.e. Name(0) = x 7 6

Programming Excel/VBA Part II (A.Fring)

* Example 1:

Sub Examplel()
Dim A(8 To 10)
A(R)=2
A(9) =3
A(10) = A(8) + A(9)
Range("A10").Value = A(10)

End Sub

- writes 5 into the cell A10 of the active worksheet

» Example 2:
Sub Example2()

Dim B As Variant
B = Array(2, 3, 4, 5)
Range("A13").Value = (B(0) + B(1)) /B(3)
End Sub
- writes 1 into the cell A13 of the active worksheet 77

» Multidimensional arrays are VBA variables which can hold
more than one item related to several index sets (up to 60)
- e.g. a two dimensional array is a matrix

syntax: declaration: Dim Name(numl,num2,num3,...)
usage: Name(x,y,z,...) 0 =<x <numl

0 <y =<num2

0 <z < num3

- the change of the index set is analogue to the one dimensional

case .
[4]
- Expl.: a2 by 2 matrix 4 = ()

c d
declaration: Dim A(1 to 2,1 to 2)
usage: A(l1,1) =a A(1,2) =Db
A1) =c¢ AQ22) =d 78

Programming Excel/VBA Part II (A.Fring)

» Resizable arrays are arrays whose size is not fixed

syntax: declaration: Redim Name(x to y)

Redim Name(w to z)

- the first statement creates a one dimensional resizable array
- the second statement overwrites the first statement

syntax: declaration: Redim Name(x to y)

Redim preserve Name(w to z) w=x, z=y

-now the values in the array Name(x to y) will be saved
» Upper and lower bound function

- Lbound(RA) gives the lower bound of the array called RA
- Ubound(RA) gives the upper bound of the array called RA

79

- Expl.: Redim RA(1 to 10)

x = Lbound(RA) (x=1)

y = Ubound(RA) (y=10)
Redim RA(12 to 19)

x = Lbound(RA) (now x = 12)
y = Ubound(RA) (now y=19)

» Data exchange: Arrays can be used as an efficient way to ex-

change data between the Excel spreadsheet and the VBA program
* VBA program — spreadsheet

Range("A1:B2").Value = A

(puts the values of the array A into cells A1:B2)
* spreadsheet - VBA program

Dim B As Variant

B = Range("A1:B2").Value

(assigns the values of cells A1:B2 to the array B) 80

Programming Excel/VBA Part II (A.Fring)

- Expl.: The content of two 2 by 2 matrices in the cells A1:B2 and D1:E2 are
read to two arrays A and B. The matrices are multiplied and the result

1s returned to the cells G1:H2.
Sub Matrix()

Dim A, B As Variant arrays have to be variants

Dim C(1 To 2,1 To 2)
A =Range("A1:B2").Value

B =Range("D1:E2").Value

Fori=1To2 the indexing starts at 1
Forj=1To?2
C@,) =A@, 1) *B(1,)) + AG, 2) * B(2,)
Next j
Next 1

Range("G1:H2").Value = C
End Sub 8 1

» MMULT is an Excel array function which returns the product
of two arrays

syntax: MMULT(array namel , array name2)

- Expl.: MMULT(“A1:B2*, “D1:E2%)
= returns the same product as the previous VBA program

- notice that MMULT is an array function, such that you have
to prepare for an output bigger than one cell: (recall LINEST)

- select a range for the output, e.g. 2x2 cells
- type the function, e.g. = MMULTY(.....)
- complete with [Ctrl | +(Shift) + [Enter]

- notice also: MMULT is an Excel function not VBA function

Programming Excel/VBA Part II (A.Fring)

» The Split Function returns an array consisting of substrings from

a string expression in which each substring is separated by a
delimiter which can be specified

syntax: Split(expression [, delimiter] [, limit])

expression = a string expression

delimiter = the character which separates the substrings

(the default value is space)
limit = the maximum number of substrings to be returned

(the default value is —1, that is all substrings)
- Expl.: Dim x as variant
x = Split(“Today is Tuesday*)
= x(1) = “Today* x(2) = “is* x(3) = “Tuesday*
or: x = Split(“a,b,c,d,e,f,g*, “*“,3)
— x(1) = “a* x(2) = “b* x(3) = “c,d,e,f,g 33

» The Join Function returns a string consisting of the values in a

string array separated by a specified delimiter

syntax: Join(sourcearray [, delimiter])

sourcearray = an array containing strings

delimiter =~ = the character which separates the substrings
(the default value is space)

- Expl.: Dim x(1 to 3)

x(1) = “Today*
x(2) = “is*

x(3) = “Tuesday*
y = Join(x)

=y = “Today is Tuesday*

34

Programming Excel/VBA Part II (A.Fring)

- similarly:

y =“Today “ & “is “ & “Tuesday*

=y = “Today is Tuesday*
- in addition:

Dim x as integer

x=38

y =“Today “ & “is “ & “Tuesday the “ & x & “-th of March*
= y = “Today is Tuesday the 8-th of March*

- here the individual components do not have to be of string type
(8 is an integer)

85

Customized User Forms (CUF)

» CUF are user defined dialog boxes
(similar to MsgBox and InputBox, but far more flexible)
* CUF can be used to display, enter and modify informations
to the Excel worksheet as well as to the VBA program
* Expl.: most standard windows dialog boxes, such as setup
windows, wizard windows etc.

Creating and designing a CUF:

1) open the user form inside the VB editor
- select Insert — UserForm
= a new user form object with the default name “UserForm1*
is created
- if the UserForm is not visible:
select View — Toolbox 86

Programming Excel/VBA Part II (A.Fring)

Contmlsl
[A bl BB EE
oo 5 e
o o
=0

& Book1 - UserForm1 [UserForm)

UserForml | x|

Opt iuktonl

I [=] E3

Controls

87

i1) add controls to the user form

to the UserForm
- move and resize the control

- having several controls, they might influence each other
- possible options for CUF controls:

CommandButton = A button that initiates an action.

TextBox = A box in which you can type text.
The text can be linked to a cell on the worksheet.

ListBox = A box that contains a list of items.
The text can be linked to a cell on the worksheet

Combo box = A text box with a drop-down list box.
You can either type or select a choice in the box.
The text can be linked to cells.

- from the toolbox drag and drop the icon of a particular control

Label = A Text added to the CUF to provide general information.

88

Programming Excel/VBA Part II (A.Fring)

Custom Form Controls

This is & label.

This is a Text Box: I Type here|

X X s W, Shakespeare -
This is & Lisk Bo: I W, Blake 3
This is 4 Comnbo Box: I

Lt B e I Cption 1 I Cption 2 I Cption 3
These are Option Buttons: - ves o

— Marital Status

{f"mala € female {f"marriad € single

These are framed Buttons: | 5ex

Toggle ISchH | Spin | Picture I TabStrip I

This is a Multi Page:
This is a Toggle Button: Make your choice |

89

Check Box = An option you can turn on or off by selecting or clearing it.
More than one check box selected at a time is possible.

Option Button = A button used to select only one of a group of options.
Frame = A panel in which groups of related controls are organized.

ScrollBar = A control that scrolls through a range of values when you
click the scroll arrows or when you drag the scroll box.

SpinButton = A button that can be attached to a cell or a text box.
Selecting the up arrow increases the value and
selecting the down arrow decreases the value.

MultiPage = A page that allows you to organize controls in form of
several pages.

TabStrip = Displays Tabs you can use to organize other controls.

Toggle button = A button that remains pressed in when selected,
and then releases when it is clicked again.

RefEdit = Enables you to select a range in the worksheet.

Image = A control that embeds a picture into a form. 90

Programming Excel/VBA Part II (A.Fring)

111) modify and adjust the entries in the Properties Window
- depending on the selected control, the Properties Window
contains various types of properties (see examples)
- if the Properties Window is not visible:
select View — Properties Window

Properties - ComboBox1

Properties - TextBox1

|ComboBox1 Comboox | [TestBox1 TextBox = |
Alphabetic lCatagUrized Alphabetic |Categorized
= TextBoxl =

AutoSize False aukosize False

AutaTab False twtaTab False

AukoiWordSelect True Butowordselect True

ackColor [aH=00000058. Backalor [a+s0000005E:

BackSkyls 1 - fmBackstyleCpaque Backstyle 1 - fmBackStyleOpague

FardarColor Il 2500000062 GorderCalor Ml &Hs000000GS:

Eorderstyle 0 - fmBorderStylshane Eorderstyle 0 - frBorderstylerone

EoundCalurin 1 Controlsource

ColumnCount 1 ControlTipText

ColumnHeads False DragBehavior 1 - frDranBehaviorDisabled
(Columntidths Enabled True

CnntroIS.ource EnterFieldBehavior |0 - FrmEnterFieldBehaviorSelectal
(ContralTipText EnterkeyBehavior False

DragBehaviar 0 - fmDragBehaviorDisabled Fart Tahoma

DrapButtonStyle 1 - frDropButtonStyledrraw Farecalar M =H50000005E:

Enabled True Height: 1a

EnterFieldBehavior 0 - fmEnterFieldBehaviorSelectall HelpCartextin 0

Font Tahoma HideSelection True 9 1
Forfﬁolor ‘. 2H800000052 [MEMade 0 - FralMEMadeNoContral

1v) check and modify the tab order
- the tab order is the sequence in which the controls receive
the focus
- inside the VB editor select View — TabOrder ./
= a window displaying the controls in a particular order openg
- with “Move up* or “Move down* you can change this order

Tab Order | X

Tab Order

oK

Cancel

fowe Up

tove Down

b ik

v) adjust the VBA-code to your needs
- inside the VB editor select View — Code

- program now the code according to your needs 9 2

Programming Excel/VBA Part II (A.Fring)

Expl.: vesorNo 3|

what is vour answer?
£ ies.
Mo

" Don't know

Create a CUF with title “Yes or No* and a label saying
“What is your answer?* The form should contain three
OptionButtons with text: “Yes®, “No“, “Don‘t know*. When
“Yes“ is selected write “Y* into the cell “D10%, when “No“ is
selected “N* and “0* for “Don‘t know*.

Running a user form:

- select “Run‘ as for “Sub*
- or select function key F5
- or attach a Commandbutton to it on a worksheet 93

- open a user form

- add a label with text “What is your answer?*

- add three OptionButtons with specified test

- change the caption in the UserForm Properties Window to
“Yes or No*

- view the code of the UserForm, it will say

- Private Sub UserForm_Click()

End Sub

- “private* means the procedure can only be used in the
current workbook

- “Click* indicates which event will run this code
(in the Code window there is a ListBox which offers
other possibilities, such as “DblClick®, etc.) 94

Programming Excel/VBA Part II (A.Fring)

- complete the code as follows
Private Sub UserForm_Click()
If OptionButton1.Value Then
Range("D10").Value ="Y"
Elself OptionButton2.Value Then
Range("D10").Value = "N"
Elself OptionButton3.Value Then

Range("D10").Value =0
End If
End Sub

- OptionButton1, OptionButton2, OptionButton3 are the names of

the OptionButtons. Depending on whether the Option is selected
or not they are returned as “True* or “False®, respectively. 9 5

Customized User Forms (1)

* SpinButtons:

- add a SpinButton to a user form
- important properties of the SpinButton are:

“Min‘ and “Max‘ are the values which define the interval
in which the Spinvalues are varied

- “SmallChange* defines the step size by which the Spinvalue
varies

“ControlSource* links the value to a cell on the worksheet

- to link the SpinButton value to a TextBox, change the code as :

Sub SBAl/_change() @name of the SpinButton is S@

TB1.Value = SB1.Value
End Sub

the name of the TextBox is TBD 96

Programming Excel/VBA Part II (A.Fring)

Expl.: Create a CUF with title “Trigometric Functions®. The form
should have a SpinButton which allows to vary a value x
from 0 to 2. This value should be displayed in a TextBox.
The form should have three more TextBoxes which display
the sin(x), cos(x) and tan(x).

- add a SpinButton to the user form
- change its name to “SB1*
- in the Properties Window set “Min* to “0%, “Max* to “200*

and “SmallChange* to “5*
(now when we click though the SpinButton it takes on the

values 0,5,10,15,....190,195,200)
- add five labels with text “x=", “sin(x)=", “cos(x)=",“tan(x)=",
“n*. To be able to write “z*, select in the Properties Window

font “Mathematical®, then type p
- add four TextBoxes named “TB1¢, ..., “TB4 97

» ListBox:
- add a ListBox to a user form

- important properties of the ListBox are:
- “ControlSource* links the selected value to a cell on the

worksheet
- “RowSource* fills the list displayed in the ListBox

(e.g. put al:a20 then the list will contain the values in there)
- alternatively you can fill the list with an array in the VB code
-Expl.:
Private Sub UserForm_Click()

Dim pp As Variant
pp = Array("W. Shakespeare", "W. Blake", "J.W. von Goethe",
"F. Schiller", "Dante", "Cervantes", "Homer")

Poets.List = pp
End Sub the name of the ListBox is Poe@ 9 8

Programming Excel/VBA Part II (A.Fring)

* ComboBox:
- add a ComboBox to a user form

- important properties of the ComboBox are:
- “RowSource* fills the list displayed in the ListBox
(e.g. it could be two columns, say al:b20)
- “ControlSource* links the selected value to a cell on the

worksheet
- “ColumnCount* is the number of values displayed in the

ComboBox
(e.g. when you have more than one you might just want to
display a few of them)

- “BoundColumn‘‘ denotes the number of the column related
to the value of the ComboBox
(e.g. 2 could be the second column out of 5)

99

- Expl.: we have the following values stored in two columns:
W. Shakespeare 1564
W. Blake 1757
J.W. von Goethe 1749
- setting now BoundColumn =2 , ColumnCount = 1
has the effect that the names will be displayed in the
ComboBox, but not the birth years related to the value
- change the VB code to:
Private Sub CoB1_Change()
Range("k14").Value = CoB1.Value

End Sub
- the name of the ComboBox is CoB1 here

- the birth year is stored in CoB1.Value
- this value is then associated to the cell k14 1 OO

Programming Excel/VBA Part II (A.Fring)

* ToggleButton:
- add a ToggleButton to a user form

- important properties of the ToggleButton are:
- the name of the Button is associated to the boolean values
“true* or “false* which you can use in the VB program

- Expl.: @ename of the ToggleButton is ToB

Private Sub ToB_Click

If ToB Then

Range("c2").Value = "Toggle is yes"
Else
Range("c2").Value = "Toggle is no"
End If
End Sub

101

Announcements

» There are no more Lab sessions!
» The exam will take place
11-th of May 2005
» The entire lecture and the Lab-sessions including the solutions
can be obtained from
http://www.staff.city.ac.uk/~fring/Excel VBA/index.html

D v

Programming Excel/VBA Part II (A.Fring)

