(Part II) Solutions Lab-session 5

1) a) SLOPE $\rightarrow \alpha = 2.7849$ INTERCEPT $\rightarrow \beta = 1.6138$

b) LINEST $\rightarrow \alpha = 2.7849, \beta = 1.6138, r^2 = 0.9988$

c)

d)

Yes, they are more or less randomly distributed around zero and confirm therefore a linear correlation.

2) .

3) Function MyRegression(xdata, ydata)

End Function

```
Dim i, n As Integer
Dim meanx, meany, hx, hhx, hhy, Corr, Slope, Intercept As Double
Dim tt(5)
n = 10
i = 1
Do Until i = n + 1
    meanx = meanx + xdata(i) / n
    meany = meany + ydata(i) / n
    i = i + 1
Loop
i = 1
Do Until i = n + 1
   hx = hx + (xdata(i) - meanx) * (ydata(i) - meany)
   hhx = hhx + (xdata(i) - meanx)^2
   hhy = hhy + (ydata(i) - meany)^2
   i = i + 1
Loop
\mathrm{Slope} = \mathrm{hx} \; / \; \mathrm{hhx}
Intercept = meany - Slope * meanx
Corr = hx ^2 / (hhy * hhx)
tt(0) = "Slope:"
tt(1) = Slope
tt(2) = "Intercept:"
tt(3) = Intercept
tt(4) = "Correl:"
tt(5) = Corr
MyRegression = tt
```