A large class of 3D integrable lattice spin models

G. von Gehlen

ICFT05 London, April 22, 2005
joint work with S. Pakuliak, S. Sergeev
J.Phys.A36 (2003) 975-998; Int.J.Mod.Phys.A19 (2004) 179-204, J.Phys.A37 (2004) 917-935, preprint MPIM-Bonn 2005

Many 2-D integrable spin models known: Ising, RSOS, etc. Yang-Baxter equation \Longrightarrow commuting Transfer Matrices

$$
\mathcal{R}_{12}(u) \mathcal{R}_{13}(u+v) \mathcal{R}_{23}(v)=\mathcal{R}_{23}(v) \mathcal{R}_{13}(u+v) \mathcal{R}_{12}(u) .
$$

Systematic construction by quantum group techniques.
Analogue of Yang-Baxter equation for 3-dim. integrability: Tetrahedron equation (TE)
A.B.Zamolodchikov 1981, Bazhanov-Stroganov 1982

$$
\mathcal{R}_{123} \mathcal{R}_{145} \mathcal{R}_{246} \quad \mathcal{R}_{356}=\mathcal{R}_{356} \quad \mathcal{R}_{246} \quad \mathcal{R}_{145} \quad \mathcal{R}_{123}
$$

Figure 1: \mathcal{R}_{123} maps initial variables $\mathfrak{w}_{1}, \mathfrak{w}_{2}, \mathfrak{w}_{3}$ to final $\mathfrak{w}_{1}^{\prime}, \mathfrak{w}_{2}^{\prime}, \mathfrak{w}_{3}^{\prime}$

More explicitly (Each $\mathcal{R}_{i j k}$ depends on 3 param., there are 5 different param. in the $T \mathrm{E}$):

$$
\begin{aligned}
\sum_{j_{1} \ldots j_{6}} & \mathcal{R}_{i_{1}, i_{2}, i_{3}}^{j_{1}, j_{2}, j_{3}} \mathcal{R}_{j_{1}, i_{4}, i_{5}}^{k_{1}, j_{4}, j_{5}} \mathcal{R}_{j_{2}, j_{4}, i_{6}}^{k_{2}, k_{4}, j_{6}} \mathcal{R}_{j_{3}, j_{5}, j_{6}}^{k_{3}, k_{5}, k_{6}} \\
& \sim \sum_{j_{1} \ldots j_{6}} \mathcal{R}_{i_{3}, i_{5}, i_{6}}^{j_{3}, j_{5}, j_{6}} \mathcal{R}_{i_{2}, i_{4}, j_{6}}^{j_{2}, j_{4}, k_{6}} \mathcal{R}_{i_{1}, j_{4}, j_{5}}^{j_{1}, k_{4}, k_{5}} \mathcal{R}_{j_{1}, j_{2}, j_{3}}^{k_{1}, k_{2}, k_{3}}
\end{aligned}
$$

\Longrightarrow Layer-transfer matrices commute \Longrightarrow Integrability
TE is very restrictive (N^{12} eqs., by symmetries $\rightarrow N^{8}$ eqs.), essentially only one solution known:
$\mathbb{Z}_{N^{-}}$Zamolodchikov-Baxter-Bazhanov (ZBB) model for $N>2$ Boltzmann weights complex, models are chiral. Partition function per site k has been calculated (Baxter 1983) Turns our to be real:

$$
\log (k / 2 \xi)=\frac{1}{2 \pi} \sum_{i=1}^{4} \int_{0}^{\zeta_{i}}[\log (2 \cos x)+x \tan x] d x
$$

Strong indication that integrable ZBB model is critical for all 3 parameters, has no temperature variable \Longrightarrow bad for describing phase transtions. (Baxter, Forrester 1985)

Need less restrictive "modified" TE-equations (MTE)
first proposed by Mangazeev and Stroganov 1993
different rapidities at the left and right hand sides of TE, related by classical integrable equations.

Check of TE usually very tedious.

Sergeev formulation of the 3D vertex ZBB-model:

Quantum variables: elements of ultralocal Weyl algebra at root of unity:
$\mathbf{u}_{j} \cdot \mathbf{w}_{j}=\omega \mathbf{w}_{j} \cdot \mathbf{u}_{j} ; \quad \omega=e^{2 \pi i / N} ; \quad \mathbf{u}_{i} \cdot \mathbf{w}_{j}=\mathbf{w}_{j} \cdot \mathbf{u}_{i}$ for $i \neq j$.
Attach also scalar κ_{j} to each link, together: $\mathfrak{w}_{j}=\left(\mathbf{u}_{j}, \mathbf{w}_{j}, \kappa_{j}\right)$.

Key object: Canonical invertible rational mapping operator \mathcal{R}_{123} $\left(\mathcal{R}_{123} \circ \Psi\right)\left(\mathbf{u}_{1}, \mathbf{w}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{w}_{3}\right)=\Psi\left(\mathbf{u}_{1}^{\prime}, \mathbf{w}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}, \ldots, \mathbf{w}_{3}^{\prime}\right)$.
\mathcal{R}_{123} is uniquely determined from postulates:
1: Baxter Z-invariance:
lines may be shifted respect to each other
2: Linear Problem:

$$
0=\left\langle\Phi_{a}\right|+\omega^{1 / 2}\left\langle\Phi_{b}\right| \mathbf{u}_{1}+\left\langle\Phi_{c}\right| \mathbf{w}_{1}+\kappa_{1}\left\langle\Phi_{d}\right| \mathbf{u}_{1} \mathbf{w}_{1}
$$

Linear problem considered like Kirchhoff law:
Consider currents $\left\langle\phi_{i}\right|$; flowing out of the vertex \mathfrak{w}_{1} into the four sectors of the auxiliary plane around them, distributed according to the Weyl variables: (κ_{i} "coupling constant")
$\omega^{1 / 2}\left\langle\phi_{i}\right| \mathbf{u}_{1}$ flows between the arrows, $\left\langle\phi_{i}\right| \mathbf{w}_{1}$ below arrows, $\left\langle\phi_{i}\right|$ to the left sector, $\kappa_{i}\left\langle\phi_{i}\right| \mathbf{u}_{1} \mathbf{w}_{1}$ to the right sector

Auxiliary plane

Total current received by an inner sector shall vanish.

Another view of the same auxiliary planes:

A is vertex of the basic lattice
Left: Magnified view of the currents emerging from \mathfrak{w}_{3}

Conditions which determine \mathcal{R}_{123} uniquely as a canonical and invertible map: (S.Sergeev, J.Phys.A32 (1999) 5639)

- Linear Problem:

The total current received by inner sectors shall vanish.

- Currents in external sectors are invariant against Z-transformation of inner lines.

Examples from $\Delta=\nabla$:
Total current received by the left internal sector vanishes:

$$
\left\langle\phi_{h}\right|=\mathbf{w}_{1}\left\langle\phi_{1}\right|+\left\langle\phi_{2}\right|+\omega^{1 / 2} \mathbf{u}_{3}\left\langle\phi_{3}\right|=0
$$

Current received by left external sector shall equal that received by corresponding right hand sector:

$$
\begin{gathered}
\left\langle\phi_{c}\right|=\left\langle\phi_{2}^{\prime}\right|=\left\langle\phi_{1}\right|+\left\langle\phi_{3}\right| ; \\
\left\langle\phi_{b}\right|=\mathbf{w}_{1}^{\prime}\left\langle\phi_{1}^{\prime}\right|=\mathbf{w}_{2}\left\langle\phi_{2}\right|+\kappa_{3} \mathbf{u}_{3} \mathbf{w}_{3}\left\langle\phi_{3}\right| ; \text { etc. }
\end{gathered}
$$

8 equations: all currents can be eliminated. Unique solution to this $\Delta=\nabla$ linear problem: "Sergeev mapping"

$$
\begin{aligned}
\mathbf{w}_{1}^{\prime} & =\frac{\mathbf{w}_{2}}{\mathbf{w}_{1} \mathbf{w}_{3}^{-1}-\omega^{1 / 2} \mathbf{u}_{3} \mathbf{w}_{3}^{-1}+\kappa_{3} \mathbf{w}_{2}^{-1} \mathbf{u}_{3}} \\
& \ldots \\
\mathbf{u}_{3}^{\prime} & =\frac{\mathbf{u}_{2}}{\mathbf{u}_{1}^{-1} \mathbf{u}_{3}-\omega^{1 / 2} \mathbf{u}_{1}^{-1} \mathbf{w}_{1}+\kappa_{1} \mathbf{w}_{1} \mathbf{u}_{2}^{-1}}
\end{aligned}
$$

Complete formulae of the unique solution:

$$
\begin{aligned}
& \mathbf{w}_{1}^{\prime}=\frac{\mathbf{w}_{2}}{\mathbf{w}_{1} \mathbf{w}_{3}^{-1}-\omega^{1 / 2} \mathbf{u}_{3} \mathbf{w}_{3}^{-1}+\kappa_{3} \mathbf{w}_{2}^{-1} \mathbf{u}_{3}} \\
& \mathbf{u}_{1}^{\prime}=\frac{\kappa_{2} \mathbf{w}_{3}^{-1}}{\kappa_{1} \mathbf{u}_{2}^{-1} \mathbf{w}_{3}^{-1}+\kappa_{3} \mathbf{u}_{1}^{-1} \mathbf{w}_{2}^{-1}-\kappa_{1} \kappa_{3} \omega^{-1 / 2} \mathbf{u}_{2}^{-1} \mathbf{w}_{2}^{-1}} \\
& \mathbf{u}_{3}^{\prime}=\frac{\mathbf{u}_{2}}{\mathbf{u}_{1}^{-1} \mathbf{u}_{3}-\omega^{1 / 2} \mathbf{u}_{1}^{-1} \mathbf{w}_{1}+\kappa_{1} \mathbf{w}_{1} \mathbf{u}_{2}^{-1}} \\
& \mathbf{w}_{1}^{\prime} \mathbf{w}_{2}^{\prime}=\mathbf{w}_{1} \mathbf{w}_{2} ; \quad \mathbf{u}_{2}^{\prime} \mathbf{u}_{3}^{\prime}=\mathbf{u}_{2} \mathbf{u}_{3} ; \quad \mathbf{u}_{1}^{\prime} \mathbf{w}_{3}^{\prime-1}=\mathbf{u}_{1} \mathbf{w}_{3}^{-1}
\end{aligned}
$$

These eqs. define the mapping \mathcal{R}_{123} (invertible, canonical):
$\left(\mathcal{R}_{123} \circ \Phi\right)\left(\mathbf{u}_{1}, \mathbf{w}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{w}_{3}\right) \stackrel{\text { def }}{=} \Phi\left(\mathbf{u}_{1}^{\prime}, \mathbf{w}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}, \ldots, \mathbf{w}_{3}^{\prime}\right)$.
for any rational function Φ of the $\mathbf{u}_{1}, \ldots, \mathbf{w}_{3}$.
Canonical: maps the triple Weyl algebra of $\mathbf{u}_{1}, \mathbf{w}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{w}_{3}$ into the same Weyl algebra of the $\mathbf{u}_{1}^{\prime}, \mathbf{w}_{1}^{\prime}, \mathbf{u}_{2}^{\prime}, \ldots, \mathbf{w}_{3}^{\prime}$
$\underline{\text { Functional map } \mathcal{R}_{123}^{(f)} \text { implied by } \mathcal{R}_{123} \text { : }}$
For $\omega=e^{2 \pi i / N}$ we have $(a \mathbf{u}+b \mathbf{w})^{N}=(a u)^{N}+(b w)^{N}$, so:

$$
w_{1}^{\prime N}=\frac{w_{2}^{N}}{w_{1}^{N} w_{3}^{-N}+u_{3}^{N} w_{3}^{-N}+\kappa_{3}^{N} w_{2}^{-N} u_{3}^{N}} ; \text { etc. }
$$

For any rational scalar function $\psi(\ldots)$ we define

$$
\left(\mathcal{R}_{123}^{(f)} \circ \psi\right)\left(u_{1}, w_{1}, u_{2}, \ldots, w_{3}\right) \stackrel{\text { def }}{=} \psi\left(u_{1}^{\prime}, w_{1}^{\prime}, u_{2}^{\prime}, \ldots, w_{3}^{\prime}\right) .
$$

Mapping \mathcal{R}_{123} looks complicated:

$$
\mathbf{w}_{1}^{\prime}=\frac{\mathbf{w}_{2}}{\mathbf{w}_{1} \mathbf{w}_{3}^{-1}-\omega^{1 / 2} \mathbf{u}_{3} \mathbf{w}_{3}^{-1}+\kappa_{3} \mathbf{w}_{2}^{-1} \mathbf{u}_{3}} ; \quad \text { etc. }
$$

We now represent $\mathbf{u}_{i}, \mathbf{w}_{i}, \mathbf{u}_{i}^{\prime}, \mathbf{w}_{i}^{\prime}$ by $N \times N$ matrices
$\mathbf{u}_{i}=u_{i} \mathbf{X}_{i} ;$
$\mathbf{w}_{i}=w_{i} \mathbf{Z}_{i} ;$
$\mathbf{X}_{i} \mathbf{Z}_{i}=\omega \mathbf{Z}_{i} \mathbf{X}_{i}$.

So \exists a $N^{3} \times N^{3}$-matrix \mathbf{R}_{123} with
$\frac{\mathbf{u}_{i}^{\prime}}{u_{i}^{\prime}}=\mathbf{R}_{123} \frac{\mathbf{u}_{i}}{u_{i}} \mathbf{R}_{123}^{-1}, \quad \frac{\mathbf{w}_{i}^{\prime}}{w_{i}^{\prime}}=\mathbf{R}_{123} \frac{\mathbf{w}_{i}}{w_{i}} \mathbf{R}_{123}^{-1}, \quad i=1,2,3$.

We shall see: $\quad \mathbf{R}_{123}$ can be written in simple form!
\mathcal{R}_{123} : superposition of a functional mapping $\mathcal{R}_{123}^{(f)}$
and a finite dimensional similarity transform \mathbf{R}_{123} :

$$
\mathcal{R}_{123} \circ \Phi=\mathbf{R}_{123}\left(\mathcal{R}_{123}^{(f)} \circ \Phi\right) \mathbf{R}_{123}^{-1}
$$

This superposition because Weyl variables at root of unity!
(Bazhanov, Reshetikhin, Bobenko,
Sergeev, Mangazeev, Stroganov 1995)
\mathbf{R}_{123} will be Boltzmann weights of N-component spin system.

Introduce Baxter-Bazhanov cyclic Fermat-curve functions:

related to quantum dilogarithm at root of unity: Faddeev-Kashaev 1993

$$
\begin{gathered}
n \in \mathbb{Z}_{N}, \quad p=(x, y), \quad x^{N}+y^{N}=1, \\
w_{p}(0)=1, \quad w_{p}(n)=\prod_{\nu=1}^{n} \frac{y}{1-\omega^{\nu} x}
\end{gathered}
$$

Because of Fermat relation: $\quad w_{p}(n+N)=w_{p}(n)$.
Then:

$$
\begin{aligned}
R_{i_{1}, i_{2}, i_{3}}^{j_{1}, j_{2}, j_{3}} & \equiv\left\langle i_{1}, i_{2}, i_{3}\right| \mathbf{R}_{123}\left|j_{1}, j_{2}, j_{3}\right\rangle \\
& =\delta_{i_{2}+i_{3}, j_{2}+j_{3}} \omega^{\left(j_{1}-i_{1}\right) j_{3}} \frac{w_{p_{1}}\left(i_{2}-i_{1}\right) w_{p_{2}}\left(j_{2}-j_{1}\right)}{w_{p_{3}}\left(j_{2}-i_{1}\right) w_{p_{4}}\left(i_{2}-j_{1}\right)}
\end{aligned}
$$

x-coord. of the four Fermat curve points are connected by

$$
x_{1} x_{2}=\omega x_{3} x_{4} .
$$

Sergeev, Mangazeev, Stroganov 1995
Fermat curve points are defined in terms of $u_{1}, w_{1}, \kappa_{1}, \ldots, \kappa_{3}$:

$$
x_{1}=\frac{u_{2}}{\sqrt{\omega} \kappa_{1} u_{1}}, \quad x_{2}=\frac{\kappa_{2} u_{2}^{\prime}}{\sqrt{\omega} u_{1}^{\prime}}, \quad x_{3}=\frac{u_{2}^{\prime}}{\omega u_{1}}
$$

Primes denote functionally transformed scalar variables:

$$
u_{j}^{\prime}=\mathcal{R}_{1,2,3}^{(f)} \circ u_{j}, \quad w_{j}^{\prime}=\mathcal{R}_{1,2,3}^{(f)} \circ w_{j}
$$

How to prove all this? Use recursion relations like

$$
R_{i_{1}, i_{2}+1, i_{3}-1}^{j_{1}, j_{2}, j_{3}}=R_{i_{1}, i_{2}, i_{3}}^{j_{1}, j_{2}, j_{3}} \cdot \frac{y_{1}}{y_{4}} \cdot \frac{1-\omega^{i_{2}-j_{1}+1} x_{4}}{1-\omega^{i_{2}-i_{1}+1} x_{1}} .
$$

The modified Tetrahedron equation.

Basic 3-dim. lattice is formed by set of intersecting planes.
For Z-invariance $\Delta=\nabla$ we considered intersecting 3 planes:
Triangle in nearby cutting auxiliary plane, shrinking to point at vertex \mathcal{R}_{123}.

Now take 4 intersecting planes of the basic lattice: These cut auxiliary plane in 4 lines forming Quadrangle with 6 points.

Shifting one line such that one subtriangle Δ shrinks to point and then reverses to ∇ : action of $\mathcal{R}_{i j k}$.
Each quadrangle has two subtriangles which can be reversed: Figure Q_{1} : we can use either \mathcal{R}_{123} or \mathcal{R}_{356} :

$\exists 8$ different quadrangles (with 6 labeled points)
$\Longrightarrow 8$ different positions of the auxiliary plane w.r.t. vertices.

Each Q_{i} has two triangles which can be reversed
\Rightarrow we can move only clock- or anticlockwise.
The clockwise and anticlockwise mappings $Q_{1} \longrightarrow Q_{5}$
lead to the same result and so are equivalent:
\Longrightarrow The mapping \mathcal{R} solves the $T E$:
$\mathcal{R}_{123} \cdot \mathcal{R}_{145} \cdot \mathcal{R}_{246} \cdot \mathcal{R}_{356}=\mathcal{R}_{356} \cdot \mathcal{R}_{246} \cdot \mathcal{R}_{145} \cdot \mathcal{R}_{123}$.
Operator equation in Weyl space of $\mathbf{u}_{1}, \mathbf{w}_{1}, \mathbf{u}_{2}, \mathbf{w}_{2}, \ldots, \mathbf{u}_{6}, \mathbf{w}_{6}$.

TE for $\mathcal{R}_{i j k} \Longrightarrow$ TE for $\mathcal{R}_{i j k}^{(f)}$:

$$
\begin{aligned}
\mathcal{R}_{123}^{(f)} \cdot \mathcal{R}_{145}^{(f)} \cdot \mathcal{R}_{246}^{(f)} \cdot & \mathcal{R}_{356}^{(f)} \phi\left(u_{1}^{N}, \ldots, w_{6}^{N}\right) \\
& =\mathcal{R}_{356}^{(f)} \cdot \mathcal{R}_{246}^{(f)} \cdot \mathcal{R}_{145}^{(f)} \cdot \mathcal{R}_{123}^{(f)} \phi\left(u_{1}^{N}, \ldots, w_{6}^{N}\right)
\end{aligned}
$$

Now we derive from the Tetrahedron Equation

$$
\mathcal{R}_{123} \cdot \mathcal{R}_{145} \cdot \mathcal{R}_{246} \cdot \mathcal{R}_{356}=\mathcal{R}_{356} \cdot \mathcal{R}_{246} \cdot \mathcal{R}_{145} \cdot \mathcal{R}_{123}
$$

the Modified Tetrahedron Equation.
We use $\quad \mathcal{R}_{i j k} \circ \Phi=\mathbf{R}_{i j k}\left(\mathcal{R}_{i j k}^{(f)} \circ \Phi\right) \mathbf{R}_{i j k}^{-1} \quad$ and get $\mathbf{R}_{123}\left[\mathcal{R}_{123}^{(f)}\left\{\mathbf{R}_{145}\left(\mathcal{R}_{145}^{(f)}\left[\mathbf{R}_{246}\left\{\mathcal{R}_{246}^{(f)}\left(\mathbf{R}_{356}\left(\mathcal{R}_{356}^{(f)} \circ \Phi\right) \mathbf{R}_{356}^{-1}\right)\right\} \mathbf{R}_{246}^{-1}\right]\right) \mathbf{R}_{145}^{-1}\right\}\right] \mathbf{R}_{123}^{-1}$ $=\mathbf{R}_{356}\left[\mathcal{R}_{356}^{(f)}\left\{\mathbf{R}_{246}\left(\mathcal{R}_{246}^{(f)}\left[\mathbf{R}_{145}\left\{\mathcal{R}_{145}^{(f)}\left(\mathbf{R}_{123}\left(\mathcal{R}_{123}^{(f)} \circ \Phi\right) \mathbf{R}_{123}^{-1}\right)\right\} \mathbf{R}_{145}^{-1}\right]\right) \mathbf{R}_{246}^{-1}\right\}\right] \mathbf{R}_{356}^{-1}$.

Introduce shorthand:
$\mathbf{R}^{(1)}=\mathbf{R}_{123} ; \quad \mathbf{R}^{(2)}=\mathcal{R}_{1,2,3}^{(f)} \circ \mathbf{R}_{145} ; \quad \mathbf{R}^{(3)}=\mathcal{R}_{1,2,3}^{(f)} \mathcal{R}_{1,4,5}^{(f)} \circ \mathbf{R}_{246} ; \quad$ etc. giving
$\left(\mathbf{R}^{(1)} \mathbf{R}^{(2)} \mathbf{R}^{(3)} \mathbf{R}^{(4)}\right)\left\{\mathcal{R}_{123}^{(f)} \cdot \mathcal{R}_{145}^{(f)} \cdot \mathcal{R}_{246}^{(f)} \cdot \mathcal{R}_{356}^{(f)} \Phi\right\}\left(\mathbf{R}^{(1)} \mathbf{R}^{(2)} \mathbf{R}^{(3)} \mathbf{R}^{(4)}\right)^{-1}$
$=\left(\mathbf{R}^{(8)} \mathbf{R}^{(7)} \mathbf{R}^{(6)} \mathbf{R}^{(5)}\right)\left\{\mathcal{R}_{356}^{(f)} \cdot \mathcal{R}_{246}^{(f)} \cdot \mathcal{R}_{145}^{(f)} \cdot \mathcal{R}_{123}^{(f)} \Phi\right\}\left(\mathbf{R}^{(8)} \mathbf{R}^{(7)} \mathbf{R}^{(6)} \mathbf{R}^{(5)}\right)^{-1}$.
Functional TE cancels! We get the MTE :

$$
\mathbf{R}^{(1)} \mathbf{R}^{(2)} \mathbf{R}^{(3)} \mathbf{R}^{(4)}=\rho \mathbf{R}^{(8)} \mathbf{R}^{(7)} \mathbf{R}^{(6)} \mathbf{R}^{(5)}
$$

or, inserting the abbreviations:

$$
\begin{aligned}
& \mathbf{R}_{123} \cdot\left(\mathcal{R}_{123}^{(f)} \circ \mathbf{R}_{145}\right) \cdot\left(\mathcal{R}_{123}^{(f)} \mathcal{R}_{145}^{(f)} \circ \mathbf{R}_{246}\right) \cdot\left(\mathcal{R}_{123}^{(f)} \mathcal{R}_{145}^{(f)} \mathcal{R}_{246}^{(f)} \circ \mathbf{R}_{356}\right) \\
= & \rho \mathbf{R}_{356} \cdot\left(\mathcal{R}_{356}^{(f)} \circ \mathbf{R}_{246}\right) \cdot\left(\mathcal{R}_{356}^{(f)} \mathcal{R}_{246}^{(f)} \circ \mathbf{R}_{145}\right) \cdot\left(\mathcal{R}_{356}^{(f)} \mathcal{R}_{246}^{(f)} \mathcal{R}_{145}^{(f)} \circ \mathbf{R}_{123}\right) .
\end{aligned}
$$

Modified Tetrahedron Equation.

$N^{6} \times N^{6}$ matrix equation with matrix entries related by the functional transformation. Not same rapidities left and right as e.g. in Yang-Baxter eq. : Rapidities on left and right hand sides related by $\mathcal{R}_{i j k}^{(f)}$ which gives rise to classical integrable system

MTE contains 8 rapidity parameters and 16 phases.
Matrix structure:

$$
\boldsymbol{\Theta}_{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}}^{k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}}=\rho \overline{\boldsymbol{\Theta}}_{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}}^{k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}}
$$

$\Rightarrow N^{12}$ eqs. (for $N=2256$ different non-trivial eqs.).

Different 3D models \Longleftrightarrow Different solutions for functional mapping.

We obtain a large class of different 3D integrable quantum models choosing various classical solutions.

Sketch of functional mapping for whole 3D lattice, at site \mathbf{n} :

Recall:

$$
w_{1}^{\prime N}=\frac{w_{2}^{N}}{w_{1}^{N} w_{3}^{-N}+u_{3}^{N} w_{3}^{-N}+\kappa_{3}^{N} w_{2}^{-N} u_{3}^{N}}
$$

Define for the whole lattice: $\left(U=u^{N}, W=w^{N}, K=\kappa^{N}\right)$

$$
\begin{aligned}
& \frac{U_{1, \mathbf{n}+\mathbf{e}_{1}}}{U_{1, \mathbf{n}}}=\frac{W_{3, \mathbf{n}+\mathbf{e}_{3}}}{W_{3, \mathbf{n}}} \\
& =\frac{K_{2: n_{1}, n_{3}} U_{2, \mathbf{n}} W_{2, \mathbf{n}}}{K_{1: n_{2}, n_{3}} U_{1, \mathbf{n}} W_{2, \mathbf{n}}+K_{3: n_{1}, n_{2}} U_{2, \mathbf{n}} W_{3, \mathbf{n}}+K_{1: n_{2}, n_{3}} K_{3: n_{1}, n_{2}} U_{1, \mathbf{n}} W_{3, \mathbf{n}}}, \\
& \frac{W_{1, \mathbf{n}}}{W_{1, \mathbf{n}+\mathbf{e}_{1}}}=\frac{W_{2, \mathbf{n}+\mathbf{e}_{2}}}{W_{2, \mathbf{n}}}=\frac{W_{1, \mathbf{n}} W_{3, \mathbf{n}}}{W_{1, \mathbf{n}} W_{2, \mathbf{n}}+U_{3, \mathbf{n}} W_{2, \mathbf{n}}+K_{3: n_{1}, n_{2}} U_{3, \mathbf{n}} W_{3, \mathbf{n}}}, \\
& \frac{U_{2, \mathbf{n}+\mathbf{e}_{2}}}{U_{2, \mathbf{n}}}=\frac{U_{3, \mathbf{n}}}{U_{3, \mathbf{n}+\mathbf{e}_{3}}}=\frac{U_{1, \mathbf{n}} U_{3, \mathbf{n}}}{U_{2, \mathbf{n}} U_{3, \mathbf{n}}+U_{2, \mathbf{n}} W_{1, \mathbf{n}}+K_{1: n_{2}, n_{3}} U_{1, \mathbf{n}} W_{1, \mathbf{n}}} .
\end{aligned}
$$

Rewrite this to trilinear Hirota form, we solve by methods of algebraic geometry (Fay-identities) (Krichever, Shiota, Mulase 1978-84) Useful practical solution by rational limit of Θ-functions. Trivial solution \longrightarrow ZBB-model.

Conclusions:

We considered a 3-dim. oriented lattice with affine Weyl variables at root of unity, located on links. Studied local properties.

Linear current condition and $\Delta=\nabla$-invariance \Rightarrow
Sergeev rational canonical invertible mapping \mathcal{R}_{123} acting on a triple affine Weyl algebra.

Mapping splits: functional mapping of Weyl centers and a $N^{3} \times N^{3}$ matrix conjugation:

Quantum operators with coeff. determined by classical integrable system.
Conjugation matrix represented by cyclic Fermat-curve functions $w_{p}(n)$.

TE from uniqueness of $\mathcal{R} \quad\left(Q_{1} \Rightarrow Q_{5}\right)$,
MTE appears after cancellation of functional TE.
Explicit parameterization of MTE: 8 continous variables vs. 5 in ZBB model. Describe phase transition?

Explicit solutions for functional mapping and generating function for the constants of motion require global considerations and boundary conditions.

