Generalised permutation branes

Thomas Quella

King’s College London

Work with Stefan Fredenhagen (ETH Zurich),
based on discussions with Anton Alekseev (Geneva U.)

To appear soon...
The issue of classifying branes

Major steps in the classification of branes:
- Untwisted branes (Cardy’s construction)
- Twisted branes
- [(Super)conformal branes (only for very special models)]
- Symmetry breaking branes

⇒ What else?
⇒ Need to look for branes with special properties

Proposal: Employ predictions from K-theory
- K-groups for group manifolds are known explicitly
- Charge carrying branes should have an enhanced symmetry
- One can get some hints about the geometry

Prototype: $SU(2) \times SU(2)$ WZW model
⇒ Full control for equal levels, but otherwise?
A short introduction to WZW models

- WZW models: 2d non-linear σ-models on a Lie group G

- Action: Based on non-degenerate invariant form $\langle \cdot, \cdot \rangle$,

$$S[g] \sim \int_{\Sigma_2} \mathcal{L}_{\text{kin}} + \int_{B_3} \omega^{\text{WZ}} - \int_{D_2} \omega_2$$

- WZ-form: $3\omega^{\text{WZ}} = \langle g^{-1} dg, [g^{-1} dg, g^{-1} dg] \rangle$, $d\omega_2 = \omega^{\text{WZ}}|_{D_2}$

- For G simple: $\langle \cdot, \cdot \rangle = k \kappa(\cdot, \cdot)$

- $\hat{G}_k \times \hat{G}_k$ loop group symmetry $g \mapsto g_L(z)gg_R(\bar{z})^{-1}$
Maximally symmetric branes on group manifolds

- Branes wrap twisted conjugacy classes

\[\mathcal{D} = \mathcal{C}_f(\Omega) = \{ h f \Omega(h^{-1}) | h \in G \} \]

- Diagonal \(\hat{G}_k \) loop group symmetry via \(g \mapsto h g \Omega(h^{-1}) \)

- \(\Omega \) must be \textit{isometric}

- \(f \) (and hence \(\omega_2 \)) is quantised

- An example: \(SU(2) \cong S^3 \)
 - Branes are labelled by integers \(\lambda = 0, \ldots, k \)
 - \(\lambda = 0, k \) correspond to 0-branes, the rest to \(S^2 \)-branes
Boundary RG flow invariants and K-theory

- Basic ideas:
 - Space-time physics (tachyon condensation) \leftrightarrow RG flows
 - Conserved charges \leftrightarrow K-theory: $nV \oplus m\bar{V} \cong (n - m)V$
 - Non-trivial H-flux \Rightarrow need to use twisted K-theory

- An example: $SU(2)$
 - Every brane can be obtained from 0-branes
 - Charge group $K^\tau(SU(2)_k) = \mathbb{Z}_{k+2}$
For a simple group G one has

$$K^\tau(G_k) = (\Z_d)^{2^{r-1}}$$

where $r = \text{rank } G$ and d is determined by G and k.

A generalisation of the Küneth formula implies

$$K^\tau(G_{k_1} \times G_{k_2}) = (\Z_{\gcd(d_1,d_2)})^{2^{2r-1}}$$

For $SU(2) \times SU(2)$ one thus obtains

$$K^\tau(SU(2)_{k_1} \times SU(2)_{k_2}) = 2 \cdot \Z_{\gcd(k_1+2,k_2+2)}$$

Question: Which branes correspond to the “new” charges?
Product groups: The case of equal levels

Consider the product group $G \times G$ with metric

$$\langle \cdot, \cdot \rangle = k (\kappa_1 (\cdot, \cdot) + \kappa_2 (\cdot, \cdot))$$

What kind of automorphisms do we have?

$$\Omega = \Omega_1 \times \Omega_2 \Rightarrow \text{factorising branes}$$

$$D = C_{f_1} (\Omega_1) \times C_{f_2} (\Omega_2)$$

Exchange automorphism $\Omega(g_1, g_2) = (g_2, g_1)$

$$D = C_f (\Omega) = \{(g_1 f g_2^{-1}, g_2 f g_1^{-1}) \mid g_1, g_2 \in G\}$$

The simplest permutation brane is given by $f = 1$,

$$D = \{(g, g^{-1}) \mid g \in G\}$$
Product groups: The case of different levels

Now consider the same group $G \times G$ with metric

$$\langle \cdot, \cdot \rangle = k_1 \kappa_1(\cdot, \cdot) + k_2 \kappa_2(\cdot, \cdot)$$

What kind of automorphisms do we have now?

- $\Omega = \Omega_1 \times \Omega_2 \Rightarrow$ factorising branes

$$\mathcal{D} = \mathcal{C}_f(\Omega_1) \times \mathcal{C}_f(\Omega_2)$$

The exchange automorphism $\Omega(g_1, g_2) = (g_2, g_1)$ still exists but it is not isometric anymore!

Proposal: The simplest permutation brane is deformed to

$$\mathcal{D} = \{ (g^{k_2'}, g^{-k_1'}) \mid g \in G \} \quad \text{with} \quad k_i' = k_i / \gcd(k_1, k_2)$$

The symmetry is broken to $\hat{G}_{k_1+k_2}$
Lagrangian approach

- Trivialising two-form for the simplest permutation brane

\[\omega_2 = k_1 \sum_{j=1}^{k_2'-1} (k_2' - j) \text{tr} [\text{Ad}_{g^j} (g^{-1}dg)g^{-1}dg] + (1 \leftrightarrow 2) \]

- One can prove gluing conditions \(J_1 + J_2 = \bar{J}_1 + \bar{J}_2 \)

- Concrete formulas for \(SU(2) \times SU(2) \):

 - \(g = \begin{pmatrix} \cos \psi + i \cos \theta \sin \psi & \sin \psi \sin \theta e^{i\phi} \\ -\sin \psi \sin \theta e^{-i\phi} & \cos \psi - i \cos \theta \sin \psi \end{pmatrix} \Rightarrow g(\psi)^n = g(n\psi) \)

 - \(ds^2 = \sum k_i (d\psi_i^2 + \sin^2 \psi (d\theta_i^2 + \sin^2 \theta_i d\phi_i)) \)

 - \(B = \sum k_i (\psi_i - \frac{1}{2} \sin(2\psi_i)) \sin \theta_i d\theta_i \wedge d\phi_i, \quad H = dB \)

- Brane embedding: \(\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \begin{pmatrix} k_2' \psi \\ -k_1' \psi \end{pmatrix}, \quad \theta_i = \theta, \phi_i = \phi \)

- \(\omega_2 \sim [k_2 \sin(2k_1' \psi) - k_1 \sin(2k_2' \psi)] \sin \theta \, d\theta \wedge d\phi \)
Dirac-Born-Infeld approach

- Branes minimise the DBI action

\[S_D = \int e^{-\Phi} \sqrt{\det(\hat{g} + \omega_2)} + \cdots \]

- Brane embedding: \(X^\mu = X^\mu(Y^i) \)
- Induced metric \(\hat{g}_{ij} = g_{\mu\nu} \partial_i X^\mu \partial_j X^\nu \)

- For \(\Phi = 0 \) the EOM read

\[\text{tr} \left[(\hat{g} + \omega_2)^{-1} \Omega^\mu \right] = 0 \]

\[\Omega_{ij}^\mu = \partial_i \partial_j X^\mu + \Gamma_{i\nu\rho}^\mu \partial_i X^\nu \partial_j X^\rho - \hat{\Gamma}_{ij}^k \partial_k X^\mu \]

- Generalised connection \(\Gamma = \Gamma_{LC}(g) - \frac{1}{2} H \)

- Works out for the simplest permutation brane on \(G \times G \)!
Non-trivial defect lines from folding

- Folding maps defect lines between CFT$_1$ and CFT$_2$ to boundaries in CFT$_1 \times$ CFT$_2$

\[\begin{array}{ccc}
\text{G}_{k_1} & \text{G}_{k_2} \\
\end{array} \rightarrow \begin{array}{c}
\text{G}_{k_1} \times \text{G}_{k_2}
\end{array} \]

- Our construction gives rise to new non-trivial defects between two WZW models based on the same group but at different levels.

Reminder: The old construction used the decomposition

\[\frac{G_{k_1} \times G_{k_2}}{G_{k_1+k_2}} \times G_{k_1+k_2} \rightarrow G_{k_1} \times G_{k_2} \]
Generalisation to cosets

How to extend our construction to cosets \(G/H \times G/H \)?

The group \(G \) and the coset \(G/T \) (\(T = \text{maximal torus} \)) are related by a marginal bulk deformation.

Natural guess for the brane geometry:

\[
\mathcal{D} = \left\{ \left((gh)^{k_2'}, (hg)^{-k_1'} \right) \mid g \in G, h \in H \right\} \subset G \times G
\]

But: Open whether DBI is satisfied for this proposal

Aim: New branes in Calabi-Yau manifolds (Gepner models)

\[
\frac{SU(2)^{k_1} \times U(1)^2}{U(1)^{k_1+2}} \times \ldots \times \frac{SU(2)^{k_n} \times U(1)^2}{U(1)^{k_n+2}}
\]
Towards a CFT description?

Denote by MM_p the p^{th} minimal model

Consider the following CFT

$$\text{MM}_p \times \text{MM}_p \text{ with a permutation brane}$$

Then one should be able to follow the combined bulk/boundary flow to the CFT $(q < p)$

$$\text{MM}_q \times \text{MM}_p \text{ with some brane configuration } X$$

Questions:

- How does X look like?
- Is it an elementary brane or composite?
- Can one identify the symmetry preserved?
Outlook

Unfortunately not enough time to discuss:

Higher dimensional branes ($f \neq 1$)

Arbitrary permutations in $G \times \cdots \times G$

Open questions:

- DBI calculations for all these branes
- Check of the EOM
- Calculation of energies
- Identification of the precise symmetry preserved
- Boundary states
- Calculation of boundary entropies (g-factors)
- Comparison with DBI results
- Application to Gepner models
- Analogous construction for principal chiral models?