Classtest Mathematical Methods II, MA3603 (A)

Instructions

Answer all five questions by clearly marking the box of the correct answer. Each question carries 6 marks. Some of the questions may have several correct answers, in which case the 6 marks are distributed equally over the correct answers. A wrong answer will annihilate the marks of a correct answer. Remove any notes from your workplace.

DATE: Monday 08/04/2013 at 13:00

1) Consider the following transformations.

$$
\begin{aligned}
& T_{1}(z)=\frac{z+2 e^{i \pi / 6}}{2 z+i \sqrt{3}}, \quad T_{2}(z)=\frac{z^{2}+i z+z \sqrt{3}}{2 z^{2}+z i \sqrt{3}} \\
& T_{3}(z)=\frac{z+i(z+\sqrt{3}+1)+\sqrt{3}-1}{(2+2 i) z-(1-i) \sqrt{3}}, \quad T_{4}(z)=\frac{z-i-\sqrt{3}}{2 z+i \sqrt{3}}
\end{aligned}
$$

Which of the following statements is correct?
\square All transformations are inequivalent.

- $T_{1}(z)$ and $T_{2}(z)$ are equivalent.
- $T_{2}(z)$ and $T_{3}(z)$ are equivalent.
$\square T_{1}(z)$ and $T_{4}(z)$ are equivalent.
- $T_{1}(z)$ and $T_{3}(z)$ are equivalent.$T_{3}(z)$ and $T_{4}(z)$ are equivalent.

2) Given is the function $f(z)=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)$ defined on $D \in \mathbb{C}$. Which of the following statements is correct?The derivative of $f(z)$ is not an analytic function.
\square When $f^{\prime}\left(z_{0}\right) \neq$ const then $f(z)$ preserves angles at $z_{0} \in D$.
$\square u(x, y)=x^{3}-3 x y^{2}$ is a harmonic functions.

- $3 x^{2} y-y^{3}$ is the conjugate function of $x^{3}-3 x y^{2}$.
$\square f(z)$ is a conformal map.D is conformal.

3) Which of the following statements is correct?Branch cuts make a multivalued function single valued and analytic.
■ Using Riemann surfaces one does not need branch cuts to make functions analytic.
■ $f(r, \theta)=r^{1 / 4} e^{i \theta / 4}$ and $g(r, \theta)=r^{2 / 8} e^{i \theta / 4} e^{i 3 \pi / 4}$ are branches of the same function.Every point on a branch cut is a branch point.
4) Which of the following identities is correct

$$
\begin{aligned}
& I_{1}: \int_{-1}^{-\infty} d \hat{z}(\hat{z}-1)^{-2 / 3}(\hat{z}+1)^{-2 / 3}=e^{-i \pi / 3} \int_{1}^{\infty} d \hat{z}|\hat{z}+1|^{-2 / 3}|\hat{z}-1|^{-2 / 3} \\
& I_{2}: \int_{-1}^{-\infty} d \hat{z}(\hat{z}-1)^{-2 / 3}(\hat{z}+1)^{-2 / 3}=e^{-i \pi 4 / 3} \int_{1}^{\infty} d \hat{z}|\hat{z}+1|^{-2 / 3}|1-\hat{z}|^{-2 / 3} \\
& I_{3}: 1=-\int_{-\infty}^{\infty} \delta(x-\pi) \sin (3 x / 2) d x \\
& I_{4}: \mathcal{F} u^{\prime}(x)=i x \mathcal{F} u(x) \quad \text { when } \lim _{t \rightarrow \pm \infty} u(t)=1 \\
& I_{5}: \mathcal{F} v(x)=e^{x \Delta} \mathcal{F} u(x) \quad \text { for } v(x)=u(x+\Delta), \Delta \in \mathbb{R}
\end{aligned}
$$

\square All identities are incorrect.

- I_{1} is correct.I_{2} is correct.
- I_{3} is correct.I_{4} is correct.I_{5} is correct.

5) The function $u(x)$ is piecewise smooth and has exponential growth $\alpha>0$. The function $v(x)$ is piecewise smooth and has exponential growth $\beta>\alpha$. The function $w(x)$ is absolutely integrable.

Which of the following statements is correct?The Laplace transform for the function $w(x)$ exists.
$\square \mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $x>\alpha$.
■ $\mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $x>\beta$.
$\square \mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $\alpha<x<\beta$.
$\square \mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $x>0$.
$\square \mathcal{L}(\lambda u+\kappa v)(x)=\bar{\lambda} \mathcal{L}(u)(x)+\bar{\kappa} \mathcal{L}(v)(x), \quad \lambda, \kappa \in \mathbb{C}$.

Classtest Mathematical Methods II, MA3603 (B)

Instructions

Answer all five questions by clearly marking the box of the correct answer. Each question carries 6 marks. Some of the questions may have several correct answers, in which case the 6 marks are distributed equally over the correct answers. A wrong answer will annihilate the marks of a correct answer. Remove any notes from your workplace.

DATE: Monday 08/04/2013 at 13:00

1) Consider the following transformations.

$$
\begin{array}{ll}
T_{1}(z)=\frac{z+\sqrt{2} e^{i \pi / 4}}{3 z+i \sqrt{2}}, & T_{2}(z)=\frac{z-1-i}{3 z+i \sqrt{2}} \\
T_{3}(z)=\frac{z^{2}+(1+i) z}{3 z^{2}+i \sqrt{2} z}, & T_{4}(z)=\frac{2+(1-i) z}{(3-3 i) z+(1+i) \sqrt{2}}
\end{array}
$$

Which of the following statements is correct?
\square All transformations are inequivalent.
$\square T_{1}(z)$ and $T_{2}(z)$ are equivalent.
$\square T_{2}(z)$ and $T_{3}(z)$ are equivalent.

- $T_{1}(z)$ and $T_{4}(z)$ are equivalent.
- $T_{1}(z)$ and $T_{3}(z)$ are equivalent.
$\square T_{3}(z)$ and $T_{4}(z)$ are equivalent.

2) Given is the function $f(z)=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)$ defined on $D \in \mathbb{C}$. Which of the following statements is correct?

- $f(z)$ can be written as $f(z)=z^{3}$.

■ $u(x, y)=3 x^{2} y-y^{3}$ is a harmonic functions.
$\square 3 x^{2} y-y^{3}$ is the conjugate function of $3 y^{2} x-x^{3}$.
\square The derivative of $f(z)$ is not an analytic function.
$\square D$ is conformal.

- $f(z)$ is a conformal map.

3) Which of the following statements is correct?Every point on a branch cut is a branch point.
■ To avoid branch cuts to make functions analytic one can use Riemann surfaces .
■ $f(r, \theta)=r^{1 / 3} e^{i \theta / 3} e^{i \pi / 3}$ and $g(r, \theta)=r^{2 / 6} e^{i \theta / 3}$ are branches of the same function.Branch cuts make a multivalued function single valued and analytic.
4) Which of the following identities is correct

$$
\begin{aligned}
& I_{1}: \int_{-1}^{-\infty} d \hat{z}(\hat{z}-1)^{-2 / 3}(\hat{z}+1)^{-2 / 3}=e^{-i \pi 4 / 3} \int_{1}^{\infty} d \hat{z}|\hat{z}+1|^{-2 / 3}|\hat{z}-1|^{-2 / 3} \\
& I_{2}: \int_{-1}^{-\infty} d \hat{z}(\hat{z}-1)^{-2 / 3}(\hat{z}+1)^{-2 / 3}=e^{-i \pi / 3} \int_{1}^{\infty} d \hat{z}|\hat{z}+1|^{-2 / 3}|1-\hat{z}|^{-2 / 3} \\
& I_{3}: \mathcal{F} v(x)=e^{x \Delta} \mathcal{F} u(x) \quad \text { for } v(x)=u(x+\Delta), \Delta \in \mathbb{R} \\
& I_{4}: \mathcal{F} u^{\prime}(x)=x \mathcal{F} u(x) \text { when } \lim _{t \rightarrow \pm \infty} u(t)=0 \\
& I_{5}:-1=\int_{-\infty}^{\infty} \delta(x-\pi) \cos (3 x) d x
\end{aligned}
$$

\square All identities are incorrect.I_{1} is correct.

- I_{2} is correct.
$\square I_{3}$ is correct.
$\square I_{4}$ is correct.
■ I_{5} is correct.

5) The function $u(x)$ is piecewise smooth and has exponential growth $\gamma>0$. The function $v(x)$ is piecewise smooth and has exponential growth $\beta>\gamma$. The function $w(x)$ is absolutely integrable.
Which of the following statements is correct?
\square The Laplace transform for the function $w(x)$ exists.
$\square \mathcal{L}(\lambda u+\kappa v)(x)=\kappa \mathcal{L}(u)(x)+\lambda \mathcal{L}(v)(x), \quad \lambda, \kappa \in \mathbb{C}$.
$\square \mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $x>0$.
$\square \mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $\gamma<x<\beta$.
$\square \mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $x>\gamma$.

- $\mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $x>\beta$.

Classtest Mathematical Methods II, MA3603 (C)

Instructions

Answer all five questions by clearly marking the box of the correct answer. Each question carries 6 marks. Some of the questions may have several correct answers, in which case the 6 marks are distributed equally over the correct answers. A wrong answer will annihilate the marks of a correct answer. Remove any notes from your workplace.

DATE: Monday 08/04/2013 at 13:00

1) Consider the following transformations.

$$
\begin{aligned}
& T_{1}(z)=\frac{z-1-i \sqrt{3}}{\sqrt{3} z+i}, \quad T_{2}(z)=\frac{z+2 e^{i \pi / 3}}{\sqrt{3} z+i} \\
& T_{3}(z)=\frac{z+4-i \sqrt{3} z}{i(1-3 z)+\sqrt{3} z+\sqrt{3}}, \quad T_{4}(z)=\frac{-z^{2}-i \sqrt{3} z-z}{-\sqrt{3} z^{2}-i z}
\end{aligned}
$$

Which of the following statements is correct?
\square All transformations are inequivalent.$T_{1}(z)$ and $T_{2}(z)$ are equivalent.

- $T_{2}(z)$ and $T_{3}(z)$ are equivalent.
$\square T_{1}(z)$ and $T_{4}(z)$ are equivalent.
- $T_{2}(z)$ and $T_{3}(z)$ are equivalent.
- $T_{3}(z)$ and $T_{4}(z)$ are equivalent.

2) Given is the function $f(z)=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)$ defined on $D \in \mathbb{C}$. Which of the following statements is correct?

- $f(z)$ preserves angles of intersection lines.
$\square u(x, y)=3 x^{2} y-y^{2}$ is a harmonic functions.
$\square 3 x^{2} y-y^{3}$ is the conjugate function of $x^{3}-3 x y^{2}$.
- The derivative of $f(z)$ is an analytic function.D is not conformal.
$\square f(z)$ is not a conformal map.

3) Which of the following statements is correct?

■ $f(r, \theta)=r^{1 / 5} e^{i \theta / 5} e^{i \pi / 5}$ and $g(r, \theta)=r^{2 / 10} e^{i \theta / 5}$ are branches of the same function.
■ Use Riemann surfaces instead of branch cuts avoids to restrict θ.Every point on a branch cut is a branch point.Branch cuts make a multivalued function single valued and analytic.
4) Which of the following identities is correct

$$
\begin{aligned}
& I_{1}: \int_{-1}^{-\infty} d \hat{z}(\hat{z}-1)^{-2 / 3}(\hat{z}+1)^{-2 / 3}=e^{-i \pi / 3} \int_{1}^{\infty} d \hat{z}|\hat{z}+1|^{-2 / 3}|\hat{z}-1|^{-2 / 3} \\
& I_{2}: \mathcal{F} u^{\prime}(x)=i x \mathcal{F} u(x) \quad \text { when } \lim _{t \rightarrow \pm \infty} u(t)=0 \\
& I_{3}: \mathcal{F} v(x)=e^{x \Delta} \mathcal{F} u(x) \quad \text { for } v(x)=u(x+\Delta), \Delta \in \mathbb{R} \\
& I_{4}: 1=\int_{-\infty}^{\infty} \delta(x-\pi) \cos (3 x) d x \\
& I_{5}: \int_{-1}^{-\infty} d \hat{z}(\hat{z}-1)^{-2 / 3}(\hat{z}+1)^{-2 / 3}=e^{-i \pi 4 / 3} \int_{1}^{\infty} d \hat{z}|\hat{z}+1|^{-2 / 3}|1-\hat{z}|^{-2 / 3}
\end{aligned}
$$

\square All identities are incorrect.

- I_{1} is correct.
- I_{2} is correct.
$\square I_{3}$ is correct.I_{4} is correct.I_{5} is correct.

5) The function $u(x)$ is piecewise smooth and has exponential growth $\gamma>0$. The function $v(x)$ is piecewise smooth and has exponential growth $\alpha>\gamma$. The function $w(x)$ is absolutely integrable.
Which of the following statements is correct?The Laplace transform for the function $w(x)$ exists.$\mathcal{L}(\lambda u+\kappa v)(x)=\lambda \mathcal{L}(u)(x) \star \kappa \mathcal{L}(v)(x), \quad \lambda, \kappa \in \mathbb{C}$.$\mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $x>0$.$\mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $\gamma<x<\alpha$.$\mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $x>\gamma$.
■ $\mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $x>\alpha$.

Classtest Mathematical Methods II, MA3603 (D)

Instructions

Answer all five questions by clearly marking the box of the correct answer. Each question carries 6 marks. Some of the questions may have several correct answers, in which case the 6 marks are distributed equally over the correct answers. A wrong answer will annihilate the marks of a correct answer. Remove any notes from your workplace.

Date: Monday 08/04/2013 at 13:00

1) Consider the following transformations.

$$
\begin{aligned}
& T_{1}(z)=\frac{2 z^{2}-i \sqrt{3} z+z}{z^{2}+i \sqrt{2} z}, \quad T_{2}(z)=\frac{2 z+2 e^{-i \pi / 3}}{z+i \sqrt{2}} \\
& T_{3}(z)=\frac{2 z+1+i \sqrt{3}}{z+i \sqrt{2}}, \quad T_{4}(z)=\frac{2 i \sqrt{3} z+2 z+4}{z+i(\sqrt{3} z+\sqrt{2})-\sqrt{6}}
\end{aligned}
$$

Which of the following statements is correct?All transformations are inequivalent.
■ $T_{1}(z)$ and $T_{2}(z)$ are equivalent.
$\square T_{2}(z)$ and $T_{3}(z)$ are equivalent.

- $T_{1}(z)$ and $T_{4}(z)$ are equivalent.
$\square T_{2}(z)$ and $T_{3}(z)$ are equivalent.
■ $T_{2}(z)$ and $T_{4}(z)$ are equivalent.

2) Given is the function $f(z)=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)$ defined on $D \in \mathbb{C}$. Which of the following statements is correct?

- $f(z)$ preserves angles of intersection lines.
- $f(z)$ is a conformal map.
- The derivative of $f(z)$ is an analytic function.
$\square D$ is conformal.
$\square u(x, y)=x^{3}-3 x y^{2}$ is not a harmonic functions.
$\square x^{3}-3 x y^{2}$ is the conjugate function of $y^{3}-3 y x^{2}$.

3) Which of the following statements is correct?Riemann surfaces have infinitely many branch points.Every point on a branch cut is a branch point.

- Branch cuts make a nonanalytic functions analytic.

■ $f(r, \theta)=r^{1 / 7} e^{i \theta / 7} e^{i \pi / 7}$ and $g(r, \theta)=r^{2 / 14} e^{i \theta / 7}$ are branches of the same function.
4) Which of the following identities is correct

$$
\begin{aligned}
& I_{1}: \int_{-1}^{-\infty} d \hat{z}(\hat{z}-1)^{-2 / 3}(\hat{z}+1)^{-2 / 3}=e^{-i \pi 4 / 3} \int_{1}^{\infty} d \hat{z}|\hat{z}+1|^{-2 / 3}|\hat{z}-1|^{-2 / 3} \\
& I_{2}: 1=\int_{-\infty}^{\infty} \delta(x-\pi) \sin (2 x) d x \\
& I_{3}: \mathcal{F} u^{\prime}(x)=i x \mathcal{F} u(x) \quad \text { when } \lim _{t \rightarrow \pm \infty} u(t)=\infty \\
& I_{4}: \mathcal{F} v(x)=e^{i x \Delta} \mathcal{F} u(x) \quad \text { for } v(x)=u(x+\Delta), \Delta \in \mathbb{R} \\
& I_{5}: \int_{-1}^{-\infty} d \hat{z}(\hat{z}-1)^{-2 / 3}(\hat{z}+1)^{-2 / 3}=e^{-i \pi / 3} \int_{1}^{\infty} d \hat{z}|\hat{z}+1|^{-2 / 3}|1-\hat{z}|^{-2 / 3}
\end{aligned}
$$

\square All identities are incorrect.
$\square I_{1}$ is correct.
$\square I_{2}$ is correct.
$\square I_{3}$ is correct.

- I_{4} is correct.
- I_{5} is correct.

5) The function $u(x)$ is piecewise smooth and has exponential growth $\beta>0$. The function $v(x)$ is piecewise smooth and has exponential growth $\alpha>\beta$. The function $w(x)$ is absolutely integrable.
Which of the following statements is correct?The Laplace transform for the function $w(x)$ exists.$\mathcal{L}(\lambda u+\kappa v)(x)=-\bar{\lambda} \mathcal{L}(u)(x)-\bar{\kappa} \mathcal{L}(v)(x), \quad \lambda, \kappa \in \mathbb{C}$.
■ $\mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $x>\alpha$.$\mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $x>0$.$\mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $\beta<x<\alpha$.$\square \mathcal{L}(u \star v)(x)=(\mathcal{L} u)(x)(\mathcal{L} v)(x)$ for $x>\beta$.
