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1. (a) State the convolution theorem for the Laplace transform. Use the
convolution theorem to obtain the inverse Laplace transform

L−1

{
1

s(s− 1)4

}
.

(b) Using the Laplace transform method, find the function y(t) satisfying

d2y

dt2
+ 11

dy

dt
+ 28y = g(t)

with y(0) = y′(0) = 0, where

g(t) =

{
1; 0 ≤ t < 2
0; t ≥ 2

2. (a) If the sine Fourier transform of f(x) is Fs(ω), show, stating the con-
ditions that must be satisfied by f and f ′, that the cosine Fourier
transform Fc(f

′) = ωFs(ω)−f(0). Show also that Fs(f
′) = −ωFc(ω).

By taking the cosine Fourier transform of the identity

d2(e−ax)

dx2
= a2e−ax,

find the cosine Fourier transform of the function f(x) = e−ax, where
a is a positive number.

(b) Determine the cosine Fourier transform of the function f(x) = xe−x.
Hence evaluate the integral

∫ ∞

0

(1− ω2) cos(ωx)

(1 + ω2)2
dω,

where x ≥ 0.

Turn over . . .



3. A function of two variables u(x, t) satisfies the partial differential equation

∂u

∂x
= 2

∂u

∂t
+ u

in the region x ≥ 0, t ≥ 0.

Using Laplace transforms with respect to the variable t, find u(x, t) satis-
fying the condition

u(x, 0) = 6e−3x

given that u(x, t) is bounded for x ≥ 0, t ≥ 0.

4. (a) The general equation of a circle or straight line in the (x, y)-plane
has the form A(x2 + y2) + Bx + Cy + D = 0, where A, B, C and D
are real numbers. Writing z = x + iy, express the equation of the
circle (line) in terms of z and z∗ = x − iy. Hence prove that the
mapping w = z−1 maps every circle or straight line in the complex
z-plane onto a circle or a line in the w-plane.

(b) Find the linear fractional transformation that maps the points z1 = 0,
z2 = 1, z3 = ∞ in the complex z-plane onto w1 = −1, w2 = −i,
w3 = 1 in the complex w-plane.

What is the region in the z-plane that is mapped by such a linear
fractional transformation onto |w| = 2?

Turn over . . .



5. (a) Show that the mapping w = (1 + z)/(1 − z) maps the unit disc
|z| ≤ 1 in the complex z-plane onto the right-hand half Re w ≥ 0 of
the complex w-plane.

(b) Show that the function φ(x, y) = a + b Arg(z), where z = x + iy and
a, b are arbitrary constants, satisfies Laplace’s equation ∇2φ = 0.

Two metallic plates perpendicular to the (x, y)-plane intersect the
(x, y)-plane along the lines arg(z) = π/2 and arg(z) = −π/2 as
shown in Fig.1(a). Given that the lower plate is kept at a constant
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Figure 1:

potential φ1 and the upper plate at a potential φ2, find the potential
φ(x, y) between the two plates.

(c) Two semi-circular metallic plates perpendicular to the (x, y)-plane
intersect the (x, y)-plane in a circle |z| = 1, as shown in Fig. 1(b).
The lower plate is kept at a constant potential φ1 and the upper
plate at a potential φ2. Using the mapping defined in (a), find the
potential φ(x, y) between the two plates.

Turn over . . .



The following question may be attempted only by candidates
for the Ordinary Degree

6. (a) Find the constant α so that

v(x, y) =
y

x2 + αy2

is a harmonic function. Hence find an analytic function
f(z) = u(x, y) + iv(x, y).

(b) By using the definition of the Laplace transform, find the Laplace
transform of the following:

(i) f(t) = t2;

(ii) f(t) = sin at, where a is a constant.
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