
MA 3605 Mathematical Methods Autumn 2005
Exam

1. Complex Variables and Boundary Value Problems. Consider the unit disc

D = {z = x+ iy : x2 + y2 ≤ 1}

in the complex z-plane centred at the origin z = 0. Find a solution φ(x, y) to Laplace’s
equation

∆φ(x, y) = (∂2x + ∂2y)φ(x, y) = 0

subject to the Neumann boundary condition

∂φ

∂ �N
(x, y) = 0 for all (x, y) ∈ ∂D

by following the different steps given below. Here �N is the normal vector with respect
to the circle

∂D = {z = x+ iy : x2 + y2 = 1} .

(a) Conformal mapping. State the definition of a conformal map. What proper-
ties guarantee that a map f is conformal? Consider the complex function

w = u+ iv = f(z) = i
1− z

1 + z

and determine its real and imaginary part, i.e. find the functions u(x, y) =
Re f(x + iy) and v(x, y) = Im f(x + iy), respectively. Use your result to argue
that f maps the unit disc D into the upper-half of the complex w-plane,

R = {u+ iv = w ∈ C : v ≥ 0 and −∞ < u <∞} .

Is the map conformal inside of D? Where are its critical and singular points if it
has any?

(b) Harmonic conjugate & boundary conditions. Compute the real and
imaginary part of sinhw with w = u + iv, where u = Rew, v = Imw ∈ R.
Argue without computation that ϕ(u, v) = Re sinhw and ψ(u, v) = Im sinhw
are harmonic functions on R. Show that ϕ satisfies the von Neumann boundary
condition

∂ϕ

∂�n
(u, 0) = 0,

where �n is the normal vector with respect to the real line ∂R = {w = u + iv :
−∞ < u <∞, v = 0} in the w-plane.

(c) Composite solution. Using the results from (a) and (b) state the resulting
solution φ to Laplace’s equation and the above von Neumann boundary condition
on ∂D in terms of the normal vector �N of ∂D. Sketch the normal vector �N and
find a parametrization for it along the circle ∂D. Hence, express the directional
derivative ∂φ/∂ �N in terms of the gradient ∇φ.
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2. Fourier transformation & the Wave Equation.

(a) State the definition of the Fourier transform and its existence conditions. Let f(x)
be a continuously differentiable function with Fourier transform f̂(k). Compute
the Fourier transform of its derivative f 0(x) in terms of f̂(k).

(b) Consider the partial differential equation

∂2t u(x, t) = c2∂2xu(x, t), −∞ < x <∞, t > 0

with initial conditions

u(x, 0) = 0 and ∂tu(x, 0) = f 0(x) .

Apply Fourier transformation to obtain an ordinary differential equation for the
Fourier transform û(k, t) of u(x, t). Solve this ordinary differential equation via
Laplace transfomation to find the final solution u(x, t) in terms of the function
f(x) using the result from (a).

3. Fourier Series & the Heat Equation.

(a) Let f(x) be even and continuous on the interval −L < x < L and assume that
it is 2L-periodic, f(x) = f(x + 2L). Write down the non-vanishing terms in the
Fourier series expansion of f(x). State the explicit form of the Fourier coefficients.
Now do the same when f(x) is odd.

(b) Solve the partial differential equation

∂tu(x, t) = ∂2xu(x, t), 0 < x < L, t > 0

with the boundary conditions

u(0, t) = u(L, t) = 0, t ≥ 0,

and the initial condition
u(x, 0) = x .

Extend u(x, t) to the interval −L < x < L by assuming either that it is even or
odd. Which of these two choices is in accordance with the boundary conditions?
Then expand u(x, t) into a Fourier series and derive an ordinary differential equa-
tion for the Fourier coefficients un(t) of u(x, t). Determine the latter via Laplace
transformation. Express the final solution u(x, t) in terms of the Fourier coeffi-
cients of the function f(x) = x.

4. Laplace transforms.

(a) Give the definition and existence conditions of the Laplace transform L of a
function f . State the convolution theorem for the Laplace transform. Use the
convolution theorem to compute

L−1[ 1

s2(s2 + ω2)
] .
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(b) Prove as a special case of Heaviside’s shift theorem,

L[H(t− a)f(t− a)](s) = e−asF (s), a > 0, F = Lf, H(t) =

½
0, t < 0
1, t > 0

that the Laplace transform of the Heaviside step function H is

L[H(t− a)](s) =
e−as

s
.

(c) Use the previous results to solve the initial value problem

f
00
(t) + ω2f(t) = H(t− a), f(0) = f 0(0) = 0, a > 0 .

5. Laplace transforms and systems of linear differential equations. Con-
sider the differential equation

f
000 − 27f = g, f(0) = f 0(0) = f 00(0) = 0

with g being constant.

(a) Solve the above differential equation via Laplace transformation and making a
partial fraction expansion.

(b) Reformulate the differential equation as a linear system of differential equations
x0 = Ax + y in normal form (do not solve it). State in abstract terms the form
of the general solution. By comparing results with part (a) of the problem (or
otherwise) state the eigenvalues of the matrix A.

You may assume the following Laplace transforms to be known.

f(t) F (s) = Lf(s)
1 1/s

eat 1
s−a , s > a

sin at a
s2+a2

cos at s
s2+a2

sinh at a
s2−a2 , s > a

cosh at s
s2−a2 , s > a
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SOLUTION

1. Solving a Neumann problem on the unit disc. (total: 33 pts)

(a) A conformal map preserves angles, magnitude and direction. Amap f is conformal
in an open set U if it is analytic in U and it’s derivative is nonzero. (3 points)
The real and imaginary part of the given function f are

u(x, y) = Re f(x+ iy) =
2y

(x+ 1)2 + y2
, (2 points)

v(x, y) = Im f(x+ iy) =
1− x2 − y2

(x+ 1)2 + y2
(2 points) .

Since z = x+ iy lies on the unit disc, we must have |z|2 = x2+ y2 ≤ 1. From this
we infer that v ≥ 0 (3 points).
A point where f is not analytic is called singular and a point where its derivative
is zero is called critical. To determine these points we compute the derivative

f 0(z) = − 2i

(1 + z)2

which shows that there are no critical points but a singular point at z = −1. Thus,
f is conformal in the complex plane with the exception of z = −1. (5 points)

(b) Decomposition into real and imaginary part yields

sinh(u+ iv) = sinhu cos v + i coshu sin v = ϕ(u, v) + iψ(u, v) (5 pts) .

Both maps are harmonic in R since sinhw is analytic on the entire complex plane
(Cauchy-Riemann equations).
The normal vector is the unit vector which is perpendicular to the boundary and
by convention points outward. Since the boundary ∂R is the real line, the normal
vector in the present case is

�n =

µ
0

−1

¶
(1 pt)

and we therefore have

∂ϕ

∂�n
(u, 0) = ∇ϕ(u, 0) · �n = ∂vϕ(u, 0) = 0 (1 pt) .

(c) The composite solution φ = ϕ ◦ f reads

φ(x, y) = ϕ [u(x, y), v(x, y)]

= sinh

µ
2y

(x+ 1)2 + y2

¶
cos

µ
1− x2 − y2

(x+ 1)2 + y2

¶
(3 pts) .

The normal vector �N is the unit radial vector,

�N =

µ
cos θ

sin θ

¶
, −π < θ < π, (3 pts)
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whence

∂φ

∂ �N
(cos θ, sin θ) = cos θ ∂xφ(cos θ, sin θ) + sin θ ∂yφ(cos θ, sin θ) = 0 (3 pts) .

The point θ = π is excluded as it is singular (see above).

2. Fourier transform. (total: 33 pts)

(a) In the lecture the Fourier transform of a function f was defined with the conven-
tion

[Ff ](k) = f̂(k) =

Z ∞

−∞
f(x)e−2πikxdx (2 pts) .

The Fourier transform exists if

—
R∞
−∞ |f(x)|dx <∞ ( 2pts)

— f has only a finite number of discontinuities (2 pts)
— f is of bounded variation (2 pts)
This is slightly more restrictive than the Lipshitz condition which has not
been discussed in the lecture.

[Ff 0](k) = e−2πikxf(x)|∞−∞ + 2πik
Z ∞

−∞
f(x)e−2πikxdx = 2πik f̂(k) (2 pts)

(b) Employing the Fourier transform we find the ODE

∂2t û(k, t) = −(2πkc)2û(k, t) (3 pts)

with initial conditions

û(k, 0) = 0 and ∂tû(k, 0) = 2πik f̂(k) (2 pts) .

Introducing the Laplace transform

Û(k, s) =

Z ∞

0

e−stû(k, t)dt

the ODE leads to the identity

Û(k, s) =
s û(k, 0) + ∂tû(k, 0)

s2 + (2πkc)2
=

2πik f̂(k)

s2 + (2πkc)2
(5 pts) .

The inverse Laplace transform gives

û(k, t) = if̂(k)
sin 2πkct

c
(5 pts) .

From this the inverse Fourier transform is easily computed to

u(x, t) =

Z ∞

−∞
û(k, t)e2πikxdk =

f(x+ ct)− f(x− ct)

2c
(8 pts) .
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3. Fourier series. (total: 33 pts)

(a)

f even : f(x) =
f0
2
+

∞X
n=1

fn cos(
πn

L
x), fn =

2

L

Z L

0

cos(
πn

L
x)f(x)dx (3 pts)

f odd : f(x) =
∞X
n=1

fn sin(
πn

L
x), fn =

2

L

Z L

0

sin(
πn

L
x)f(x)dx (3 pts)

(b) The boundary conditions can be satisfied by extending u(x, t) to an odd function,
u(x, t) := −u(−x, t) for −L < x < 0. Thus, the formal Fourier series for u(x, t)
reads

u(x, t) =
∞X
n=1

un(t) sin(
πn

L
x) (1 pt) .

Insertion into the heat equation leads to the ODE

∂tun(t) = −(πn/L)2un(t), un(0) = fn (5 pts) .

Solving this equation via Laplace transformation gives

Un(s) =
fn

s+ (πn/L)2
, Un(s) =

Z ∞

0

e−stun(t)dt (5 pts) .

The inverse transform is calculated to

un(t) = fn e−(
πn
L
)2t (3 pts)

and it remains to determine the Fourier coefficients of f(x) = x on the interval
[−L,L]. (In accordance with our earlier extension of u we also extend x to be
odd.) Thus,

fn =
2

L

Z L

0

sin(
πn

L
x)xdx

= −
2x cos(πn

L
x)

πn

¯̄̄̄L
0

+
2

πn

Z L

0

cos(
πn

L
x)dx = (−)n+1 2L

πn
(10 pts)

and

u(x, t) = −2L
∞X
n=1

(−1)ne−(πnL )2t
sin(πn

L
x)

πn
(3 pts) .

4. Laplace transforms. (total: 33 pts)

(a) The Laplace transform of a function f(t) is defined as

F (s) = Lf(s) =
Z ∞

0

e−stf(t)dt (1 pt)

and exists for s > a if
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— f is piecewise continuous ( 1pt)
— and (at most) of exponential order a ≥ 0, i.e. there exists a t0 > 0 such that
|f(t)| ≤const.eat (1 pt)

The convolution theorem for the Laplace transform states that for two functions
f(t), g(t) whose Laplace transforms F (s), G(s) exist, one has

L[f ∗ g](s) = F (s)G(s), f ∗ g(t) =
Z t

0

f(t− x)g(x)dx (2 pts) .

Setting

F (s) = 1/s2 and G(s) =
1

s2 + ω2

one deduces that

f(t) = t and g(t) =
sinωt

ω
(2 pts) .

Hence,

L−1[ 1

s2(s2 + ω2)
] =

Z t

0

(t− x)
sinωx

ω
dx = − t cosωx

ω2

¯̄̄̄t
0

−
Z t

0

x sinωx

ω
dx

=
t

ω2
(1− cosωt) + t cosωt

ω2
− sinωt

ω3
=

ωt− sinωt
ω3

(8 pts) .

(b) Setting f(t) = 1 and recalling that L[1] = 1/s the result follows. (3 pts)
(c) Laplace transformation of the ODE yields

F (s) =
e−as

s(s2 + ω2)
(5 pts)

as the transform for the solution f(t). The inverse transform can be easily com-
puted by using the result from (a) and the property

[Lg0](s) = sG(s)− g(0)

with G(s) = 1/[s2(s2 + ω2)]. The result reads

f(t) = L−1[e−as s 1

s2(s2 + ω2)
] = H(t− a)

d

dt0
ωt0 − sinωt0

ω3

¯̄̄̄
t0=t−a

= H(t− a)
1− cos[ω(t− a)]

ω2
(10 pts) .

5. Systems of linear differential equations. (total: 33 pts)

(a) Using that s3 − 27 = (s− 3)(s2 + 3s+ 9) (5 pts) we obtain after Laplace trans-
formation and a partial fraction expansion

F (s) =
g

s(s− 3)(s2 + 3s+ 9) (5 pts)

= − g

27s
+

g

81(s− 3) +
g(2s+ 3)

81(s+ 3/2)2 + 27/4
(5 pts)
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The inverse transform is then obtained using the shift theorem

L[eatf(t)] = F (s− a)

and the known transform of cos,

f(t) =
g

81

Ã
e3t + 2e−3t/2 cos[

3
√
3t

2
]− 3

!
(5 pts) .

(b) The differential equation can be rewritten as

x0(t) = Ax(t) + y,

where

x =

⎛⎝ f
f 0

f 00

⎞⎠ , A =

⎛⎝ 0 1 0
0 0 1
27 0 0

⎞⎠ , y =

⎛⎝ 0
0
g

⎞⎠ (3 pts) .

The general solution to such a system of linear differential equations takes the
form

x(t) =
3X

n=1

vne
αnt −A−1y (5 pts)

with (vn, αn) being the eigenvectors and the corresponding eigenvalues of the
matrix A. The latter is invertible as detA = 27. Thus, comparing results with
part (a) we must have

α1 = 3, α2 = −
3

2
(1− i

√
3), α3 = −

3

2
(1 + i

√
3) (5 pts) .

One extra point is awarded to those students who solve three problems correctly.
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