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1) i) What is meant by a conformal map and an analytic function? State

a theorem which relates conformal maps and analytic functions.

ii) Specify as a particular conformal transformation a linear fractional

transformation w = f(z), which maps the points z1 = 1 + i,

z2 = 3, z3 = −2 in the z-plane onto w1 = 1, w2 = 0, w3 = −1 in the

w-plane. Is this map unique?

iii) Find a conformal map w = f(z) which maps the wedge region in the

z-plane

W = {r, θ : r ∈ R+, 0 ≤ θ <
π

4
}

onto the unit disc |w| ≤ 1. Draw a figure and indicate the corre-

sponding regions including some characteristic points! Which theo-

rem guarantees that such map exits? Is this map unique?

2) i) Provide a definition for a linear fractional transformation T (z). Show

that it can be written as

T (z) =
a

c
+

b− ad/c

cz + d
for c �= 0,

such that it may be understood as a composition of more elementary

transformations, i.e. a translation f∆T , a rotation fλR and the inversion

map fI . Express T (z) in terms of these maps. Provide also the

decomposition of T (z) into these type of maps for the case c = 0.

ii) Provide a definition for the cross ratio Tc of the points (z1, z2, z3, z4).

Use the decomposition of T (z) from i) to demonstrate that the cross

ratio is an invariant of the linear fractional transformation.

iii) Under which conditions is the cross ratio real, i.e. Tc ∈ R? State this

as a theorem. No proof is required.

iv) Use the result from i), ii) and the theorem in iii) to argue that the

linear fractional transformation can never map a geometrical config-

uration into a circle or a line if this configuration was not a circle or

a line in the first place.
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3) Consider the balance of the heat flow through a solid under steady state

conditions, which means that we have no time dependence. Suppose that

the solid extends infinitely long into one space direction. Under these

circumstances the dependence of the temperature T (x, y) on the two re-

maining space dimensions x, y is governed by the Laplace equation

∆T = ∂2xT + ∂2yT = 0.

Determine the temperature dependence between two infinitely high walls

at positions x = ±π/2, which are kept at temperature T = 0. The walls

stand on a surface which is kept at temperature T = 1/2.

i) Formulate the above problem as a boundary values problem. Is this

a Dirichlet or a Neumann boundary problem?

ii) Demonstrate that the two maps and the composition map

w̃ = f̃(z) = sin z, w = f̂(w̃) = ln

(
w̃ − 1
w̃ + 1

)
; f(z) = f̂ ◦ f̃(z)

can be used to transform the boundary problem of i) into the easier

problem of two parallel infinite plates. Solve the latter problem.

Hint: You may use the identities sin(x+iy) = sin x cosh y+i cosx sinh y

and tanh2(x/2) = (cosh x− 1)/(cosh x+ 1).

iii) Use the solution from ii) and the map f(z) to construct the solution

T (x, y) =
1

π
arctan

(
cos x

sinh y

)

for the boundary value problem in i).

Hint: You may use the identity tan 2x = 2 tanx/(1− tan2 x).

iv) Verify explicitly that T (x, y) solves the boundary problem in i), i.e.

check explicitly the boundary conditions and the Laplace equation.

Turn over . . .



4) Consider a point particle of mass m, which is fixed on a spring with spring

constant κ. When neglecting friction Newton’s second law describes the

motion of this particle as

mẍ(t) + κx(t) = 0,

where x is the vertical displacement of the particle as a function of time

t. Adding an external driving force F (t), this system becomes the driven

harmonic oscillator described by the equation

mẍ(t) + κx(t) = F (t). (dho)

Determine the vertical displacement of the particle as a function of time

by following the instructions i)-iii):

i) For piecewise smooth function u(x), with reasonable exponential

growth, the Laplace transform of its nth derivative Lu(n)(x) may

be expressed as

Lu(n)(x) = xnLu(x)−
n−1∑

k=0

xn−k−1u(k)(0).

Prove this formula for n = 1 and n = 2. What is meant by ex-

ponential growth? State the convolution theorem for the Laplace

transform.

ii) Use Laplace transforms with the properties of i) to solve equation

(dho) for a generic external driving force, subject to the initial con-

ditions x(0) = ẋ(0) = 0. Leave your answer in form of an integral

representation on the real axis, that is not in form of the Bromwich

integral.

Hint: You may use that

Lv(x) = ω

x2 + ω2
for v(x) = sin(ωx), λ ∈ R, x > 0.

iii) Specify now the function to be a kick at t = 0. Denoting by p the

momentum transfer of this kick, the external force can be represented

as

F (t) = pδ(t).

Compute the integral left in ii).
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5) The Fourier transform Fu(x) = û(x) of a piecewise smooth and absolutely

integrable function u(x) on the real line is defined as

Fu(x) := û(x) =

∫
∞

−∞

u(t)e−itxdt.

i) Show that the Fourier transform for the scaled function v(x) = u(λx)

with λ ∈ R+ is

Fv(x) = Fu(λx) =
1

λ
û(x/λ)

and the Fourier transform for the derivative u′(x) of the function u(x)

is

Fu′(x) = ixFu(x).

ii) Compute the Fourier transforms Fu(x) of the function

u(x) = e−x
2

.

You may use the integral
∫
∞

−∞
e−(t+ix/2)

2

dt =
√
π.

iii) Use the relation between the Fourier transform and the Fourier trans-

form of its derivative from i) and the result of ii) to compute the

Fourier transforms Fu(x) of the functions

u(x) = 2(2x2 + x− 2)e−x2 .

iv) Use Fourier transforms to solve the Fredholm integral equation for

φ(x)

λe−x
2

=

∫
∞

−∞

e−(x−s)
2

φ(s)ds,

where λ ∈ R.
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Mathematical Methods II

Solutions Exam 07

1) i) Definition: A map which preserves the angles between a pair of two intersecting
lines is called a conformal map. 1

Definition: A function f of a complex variable z is said to be analytic in the
domain D ⊂ C if its derivative exists for all z∈ D. A function is said to be
analytic in the point z0 if there exists a neighbourhood around z0 in which f in
analytic. 1

Theorem: Any analytic function f(z) defined on some domain D ⊂ C is con-
formal at the point z0 ∈ D, if f ′(z0) �= 0. 1

ii) Theorem: The linear fractional transformation w = T (z) maps three distinct
points z1, z2, z3 uniquely into three distinct points w1, w2, w3. The map is deter-
mined by the equation 1

(w − w1)(w2 − w3)
(w − w3)(w2 − w1)

=
(z − z1)(z2 − z3)
(z − z3)(z2 − z1)

.

Solving this for z1 = 1 + i, z2 = 3, z3 = −2, w1 = 1, w2 = 0, w3 = −1 gives 5

w = T (z) =
z − 3

(i− 2)z + 1 + 2i
.

iii) First rotate the wedge region W by −iπ/8

ŵ = f̂(z) = ze−iπ/8,

such that the new wedge region is

W ′ = {r, θ : r ∈ R+,−π
8
≤ θ < π

8
}.

Next map this wedge to the entire right half plane by

w̃ = f̃(ŵ) = ŵ4.

Finally we map the right half plane to the unit circle

w = f̌(w̃) =
w̃ − 1

w̃ + 1
.

Thus the map which maps W onto the unit circle is 5

w = f(z) = f̌ ◦ f̃ ◦ f̂(z) = f̌ ◦ f̃(ze−iπ/8) = f̌(−iz4) = z
4 − i
z4 + i

.

Characteristic points: 1

1 : f(0) = −1, 2 : f(1) = −i, 3 : f(eiπ/4) = i, 4 : f(eiπ/8) = 0.

1



Including some characteristic points into the figure:
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Riemann mapping theorem: Given a simply connected region D ⊂ C (i.e. 2
D has no holes) which is not the entire plane and a point z0 ∈ D. Then there
exists an analytic function f : z 
→ w which maps D one-to-one onto the interior
of the unit disk |w| < 1. The uniqueness of the map can be achieved with the
normalization condition f(z0) = 0 and f ′(z0) > 0. ∑

=20

2) i) Definition: The transformation

w = T (z) =
az + b

cz + d
for ad− bc �= 0; a, b, c, d ∈ C

is called the linear fractional transformation. 1

We can write

T c�=0(z) =
az + b

c(z + d/c)
=
a(z + d/c)− ad/c+ b

c(z + d/c)
=
a

c
+
b− ad/c
cz + d

.

Defining the translation map f∆T (z) = z +∆, the rotation map f z0R (z) = zz0 and
the inversion map fI(z) = z

−1 this can be brought into the form 3

T c �=0(z) = f
a/c
T ◦ f (bc−ad)/cR ◦ fI ◦ fdT ◦ f cR(z).

For c = 0 the linear fractional transformation T (z) can be written as 1

T c=0(z) = f
b/d
T ◦ fa/dR (z).

ii) Definition: The cross ratio Tc of the points (z1, z2, z3, z4) is the image of z4 which
maps the points (z1, z2,z3) onto (0,1,∞) 1

2



Tc(z4) =
(z4 − z1)(z2 − z3)
(z4 − z3)(z2 − z1)

.

- The difference (zi − zj) is an invariant of f∆T :

f∆T (zi − zj) = zi +∆− zj −∆ = zi − zj

Since the cross ratio is a product and ratio of such differences it is also an invariant
of the translation map

f∆T (Tc) = Tc.

- The ratio (zi − zj)/(zk − zl) is an invariant of fλR :

fλR

(
zi − zj
zk − zl

)
=
λzi − λzj
λzk − λzl

=
zi − zj
zk − zl

Since the cross ratio is a product of two such ratios it is also an invariant of the
rotation map

fλR(Tc) = Tc.

- Tc is an invariant of fI :

fI (Tc) =
(z−14 − z−11 )(z−12 − z−13 )

(z−14 − z−13 )(z−12 − z−11 )
=
z4z1(z

−1
4 − z−11 )(z−12 − z−13 )z2z3

z4z3(z
−1
4 − z−13 )(z−12 − z−11 )z2z1

= Tc

Since T (z) is composed of fT , fR, fI and Tc is an invariant of all individual trans-
formations, it must also be an invariant of T (z). 7

iii) Theorem: The cross ratio Tc of the points (z1, z2, z3, z4) is real, i.e.

arg Tc(z4) = arg
(z4 − z1)
(z4 − z3)

− arg
(z2 − z1)
(z2 − z3)

= 0 or π,

if and only if the four points z1, z2, z3, z4 lie on a line or a circle. 2

iv) The Theorem in iii) states that the cross ratio is real if and only if (z1, z2, z3, z4)
are on a circle or a line. We can map the points (z1, z2, z3, z4) into (w1, w2, w3, w4)
by means of T (z) and compute the cross ratio for (w1, w2, w3, w4). Once again the
cross ratio is real if and only if (w1, w2, w3, w4) are on a circle or a line. Since Tc is 5
an invariant of T (z) the cross ratios of (z1, z2, z3, z4) and (w1, w2, w3, w4) are the
same. This means (w1, w2, w3, w4) can only be on a line or circle if (z1, z2, z3, z4)
are on a circle or a line and vice versa. ∑

=20

3) i) The boundary problem we have to solve is

∆T (x, y) = 0, T (±π/2, y) = 0, T (x, 0) = 1/2, for |x| < π
2
, y > 0.

This is a Dirichlet problem, since the values of the function T (x, y) on the bound-
ary are given. 2

3



ii) We compute the images of the boundaries. For the left wall we compute

f(z) = f̂ ◦ f̃(−π
2
+ iy) = ln

(− cosh y − 1

− cosh y + 1

)
= ln

(
coth2 y/2

)

such that
f : −π

2
× [0,∞) 
→ [0,∞)× 0.

For the right wall we compute

f(z) = f̂ ◦ f̃(π
2
+ iy) = ln

(
cosh y − 1

cosh y + 1

)
= ln

(
tanh2 y/2

)

such that
f :
π

2
× [0,∞) 
→ (−∞, 0]× 0.

For the ground we compute

f(z) = f̂ ◦ f̃(sin x) = ln

(
sinx− 1

sin x+ 1

)
= ln

∣∣∣∣
sin x− 1

sin x+ 1

∣∣∣∣+ iπ

such that
f : [−π

2
,
π

2
]× 0 
→ (−∞,∞)× iπ.

Therefore we have mapped the original problem into the easier problem

∆T (x, y) = 0, T (x, 0) = 0, T (x, π) = 1/2, for 0 < y < π.

This is directly solved by

T (x, y) =
y

2π
.

6

iii) The solution to the Dirichlet problem in i) is therefore

T (x, y) =
1

2π
Im(f̂ ◦ f̃(z)) = 1

2π
Im

[
ln

(
sin z − 1

sin z + 1

)]
.

We compute

w = ln

(
w̃ − 1

w̃ + 1

)
= ln

∣∣∣∣
w̃ − 1

w̃ + 1

∣∣∣∣+ i arg
(
w̃ − 1

w̃ + 1

)
= u+ iv,

such that

Imw = arg

(
w̃ − 1

w̃ + 1

)
= arg

(
x̃+ iỹ − 1

x̃+ iỹ + 1

)
= arg

[
(x̃+ iỹ − 1)(x̃+ 1− iỹ)
(x̃+ 1 + iỹ)(x̃+ 1− iỹ)

]
,

= arg

(
x̃2 + ỹ2 − 1 + i2ỹ)

(x̃+ 1)2 + ỹ2

)
= arctan

(
2ỹ

x̃2 + ỹ2 − 1

)
.

Next we need to express x̃, ỹ in terms of x, y. We have

w̃ = sin(z) = sin(x+ iy) = sin x cosh y + i cosx sinh y = x̃+ iỹ

4



and therefore

Imw = arctan

(
2 cosx sinh y

sin2 x cosh2 y + cos2 x sinh2 y − 1

)

= arctan

(
2 cosx sinh y

sinh2 y − cos2 x

)
= arctan

(
2 cosx/ sinh y

1− cos2 x/ sinh2 y

)
.

Introducing now the auxiliary variable tan γ = cosx/ sinh y we can use the identity
tan 2γ = 2 tan γ/(1− tan2 γ) and obtain

Imw = arctan(tan 2γ) = 2γ = 2 arctan

(
cosx

sinh y

)
.

This means the solution to the boundary Dirichlet problem i) is

T (x, y) =
1

π
arctan

(
cosx

sinh y

)
.

6

iv) We may easily check that the boundary condition are indeed satisfied

T (±π/2, y) =
1

π
arctan

(
cos(±π/2)
sinh y

)
=

1

π
arctan 0 = 0,

T (x, 0) =
1

π
arctan

( cosx

sinh 0

)
=

1

π
limx→∞ arctan (x) = 1/2.

The Laplace equation is verified by

∂x arctan

(
cosx

sinh y

)
= − sin x sinh y

sinh2 y + cos2 x

∂2x arctan

(
cosx

sinh y

)
= − cosx sinh y

sinh2 y + cos2 x
− 2 cosx sinh y sin2 x

(sinh2 y + cos2 x)2

∂y arctan

(
cosx

sinh y

)
= − cosx cosh y

sinh2 y + cos2 x

∂2y arctan

(
cosx

sinh y

)
= − cosx sinh y

sinh2 y + cos2 x
+
2 cosx sinh y cosh2 y

(sinh2 y + cos2 x)2
.

Therefore 6

∆arctan

(
cosx

sinh y

)
= − 2 cosx sinh y

sinh2 y + cos2 x
+
2 cos x sinh y(cosh2 y − sin2 x)

(sinh2 y + cos2 x)2

=
2 cosx sinh y(− sinh2 y − cos2 x+ cosh2 y − sin2 x)

(sinh2 y + cos2 x)2

= 0.

∑
=20
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4) i) For n = 1 we have

Lu′(x) =
∫ ∞

0

u′(t)e−txdt = u(t)e−tx
∣∣∞
0
+ x

∫ ∞

0

u(t)e−txdt = −u(0) + xLu(x)

For n = 2 we have

Lu′′(x) =

∫ ∞

0

u′′(t)e−txdt = u′(t)e−tx
∣∣∞
0
+ x

∫ ∞

0

u′(t)e−txdt = −u′(0) + xLu′(x)

= −u′(0)− xu(0) + x2Lu(x)

2

Definition: The function u(x) is said to have exponential growth α if there
exists a constant µ such that

|u(x)| ≤ µeαx for x > 0, with α, µ ∈ R.

1

Convolution theorem: The Laplace transform of the convolution of the two
functions u and v, i.e. u ⋆ v(x) equals the product of the Laplace transforms these
functions

L(u ⋆ v)(x) = (Lu)(x)(Lv)(x).
1

ii) Acting with the Laplace operator L on

mẍ(t) + κx(t) = F (t)

gives
mLẍ(t) + κLx(t) = LF (t).

Using the two formulae from i) and the initial conditions x(0) = ẋ(0) = 0

Lẍ(t) = t2Lx(t)− tx(0)− ẋ(0) ⇒ Lẍ(t) = t2Lx(t)
Lẋ(t) = tLx(t)− x(0) ⇒ Lẋ(t) = tLx(t).

Therefore we can rewrite the above equation as

mt2Lx(t) + κLx(t) = LF (t).

Solving this for Lx(t)

Lx(t) = LF (t)
mt2 + κ

=
LF (t)

m(t2 + κ/m)
=
LF (t)
m

1

t2 + ω2
.

Here we abbreviated ω2 = κ/m. Using now the hint

Lv(t) = ω

t2 + ω2
for v(t) = sinωt,

6



we can rewrite the above equation as

Lx(t) = 1

mω
LF (t)Lv(t) = 1

mω
L(F∗v)(t),

where we used the convolution theorem in the last equality. Acting now with L−1
on this equation yields the final asnwer for x(t) in form of an integral representa-
tion

x(t) =
1

mω
F∗v(t) = 1

mω

∫ ∞

0

ds F (t− s) sinωs.
14

iii) Specifying now the function to be a kick at t = 0 we have to compute 2

x(t) =
p

mω

∫ ∞

0

ds δ(t− s) sinωs = p

mω
sinωt.

∑
=20

5) i) The Fourier transform for the scaled function v(x) = u(λx) with λ ∈ R+ is 2

Fv(x) = Fu(λx) =
∫ ∞

−∞

u(λt)e−itxdt =
1

λ

∫ ∞

−∞

u(s)e−isx/λds =
1

λ
û(x/λ).

The Fourier transform for the derivative u′(x) of the function u(x) is 2

Fu′(x) =
∫ ∞

−∞

u′(t)e−itxdt = u(t)e−itx
∣∣∞
−∞

+ ix

∫ ∞

−∞

u(t)e−itxdt = ixFu(x).

ii) We compute

Fu(x) =

∞∫

−∞

e−t
2

e−itxdt =

∞∫

−∞

e−(t+ix/2)
2

e−x
2/4dt

= e−x
2/4

∞∫

−∞

e−(t+ix/2)
2

dt =
√
πe−x

2/4.

We used the integral
∫∞
−∞
e−(t+ix/2)

2

dt =
√
π. 4

iii) Define v(x) = e−x
2

. Then v′(x) = −2xe−x2and v′′(x) = (4x2 − 2)e−x
2

. Therefore

u(x) = v′′(x)− v′(x)− 2v(x)

= 4x2e−x
2

+ 2xe−x
2 − 4e−x

2

,

such that

Fu(x) = Fv′′(x)−Fv′(x)− 2Fv(x)
= ixFv′(x)−Fv′(x)− 2Fv(x)
= (ix− 1)ixFv(x)− 2Fv(x)
= −

√
π(x2 + ix+ 2)e−x

2/4.

6
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iv) Introducing the function v(x) = e−x
2

, we can rewrite

λe−x
2

=

∫ ∞

−∞

e−(x−s)
2

φ(s)ds

as
λv(x) = v ∗ φ(x)

Acting on this equation with the Fourier operator F gives

λFv(x) = F(v ∗ φ)(x) = Fv(x)Fφ(x).

Therefore we obtain
λ = Fφ(x),

such that
φ(x) = λF−11(x) = λδ(x).

6∑
=20
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