
MA 3605

CITY UNIVERSITY
London

BSc Degrees in Mathematical Science

Mathematical Science with Statistics

Mathematical Science with Computer Science

Mathematical Science with Finance and Economics

MMath Degrees in Mathematical Science

P��� III E���	
��	�


Mathematical Methods

May 2008

Time allowed: 2 hours

Full marks may be obtained for correct answers to

THREE of the FIVE questions.

If more than THREE questions are answered,

the best THREE marks will be credited.

Turn over . . .



Each question carries 25 marks.

1) i) (5 marks) For an analytic function f(x, y) = u(x, y)+iv(x, y) on a do-

main D state the Cauchy-Riemann equations. Use these equations to

construct f(x, y) with given harmonic function u(x, y) = cosh x cos y.

ii) (9 marks) Provide a definition for a linear fractional transformation

T (z). Determine the linear fractional transformation w = f(z),

which maps the points z1 = i, z2 = 0, z3 = 1 in the z-plane onto

w1 →∞, w2 = 3i, w3 = −1 in the w-plane. Is this map unique?

iii) (7 marks) Show that T (z) can be written as

T (z) =
a

c
+

b− ad/c

cz + d
for c �= 0, with a, b, c, d ∈ R

such that it may be understood as a composition of more elementary

transformations, i.e. what is usually referred to as a translation f∆T ,

a rotation fλR and the inversion map fI . Express T (z) in terms of

these maps. Provide also the decomposition of T (z) into these type

of maps for the case c = 0.

iv) (1 mark) Given are two linear fractional transformations T1(z) and

T2(z). What type of map is obtained by the composition of these two

maps T1 ◦ T2(z)?
v) (3 marks) For the linear fractional transformations

T1(z) =
z − 1
z − i

and T2(z) =
z − i

z − 1
compute fI ◦ T1 ◦ T2(z) and f1−iR ◦ f−1T ◦ T1(z).

2) i) (3 marks) State the Schwarz-Christoffel theorem.

ii) (19 marks) Determine the Schwarz-Christoffel transformation, which

maps the upper half plane onto an isosceles right triangle. Map the

points x1 = −1, x2 = 1 and x3 →∞ to w1 = ia, w2 = 0 and w3 = a.

Express your result in terms of the quantity

κ =

∫ 1

−1

dẑ
1

(1 + ẑ)3/4(1− ẑ)1/2
=

√
π

21/4
Γ(1/4)

Γ(3/4)
≈ 4.40976.

iii) (3 marks) Draw the corresponding w-plane.
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3) i) (5 marks) Define the exponential growth of a function f(x) and sub-

sequently define the Laplace tranform Lf(x) for the function f(x).

ii) (20 marks) Find the inverse Laplace transform L−1v(x) for the func-
tion

v(x) =
ω

x2 − ω2
for ω ∈ R,

by computing the Bromwich integral

L−1v(x) = 1

2πi

γ+i∞∫

γ−i∞

v(t)etxdt for γ > α,

where α is the exponential growth of L−1v(x).

4) Consider two infinite cylinders placed non-coaxially with |z| = 1 and |z −
x0| = x0. The cylinders are at constant potential φ1 = 0V at |z| = 1 and
φ0 = 220V at |z−x0| = x0. The value of the center of the smaller cylinder

and its radius is taken to be x0 = 2/5. Find the potential in the xy-plane

between the two cylinders.

i) (2 marks) Draw the corresponding figure.

ii) (4 marks) Verify first that the potential for two infinitely long cylin-

ders with radii r0 and r = 1 at potentials φ0, φ1 is given by

φ(r) = (φ0 − φ1)
ln r

ln r0
+ φ1.

Hint: The Laplace equation in polar coordinates is

∆φ =
∂2φ

∂r2
+
1

r2
∂2φ

∂ϑ2
+
1

r

∂φ

∂r
= 0.

iii) (16 marks) Verify that the map

w = f(z) =
z − c

cz − 1 with c ∈ R

leaves the circle with the radius |z| = 1 invariant, that is the image

is |w| = 1. Fix the constant c, such that the circle |z − x0| = x0 is

mapped onto |w| = r0.

iv) (3 marks) Use the results from ii) and iii) to compute the potential

for the non-coaxial cylinders.
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5) The Fourier transform Fu(x) = û(x) of a piecewise smooth and absolutely

integrable function u(x) on the real line is defined as

Fu(x) := û(x) =

∫
∞

−∞

u(t)e−itxdt.

i) (5 marks) Define the convolution u � v(x) of two functions v(x) and

u(x). Then show that the Fourier transform of the convolution of two

functions v(x) and u(x) equals the product of the Fourier transforms

of v(x) and u(x).

ii) (3 marks) Compute the Fourier transforms Fu(x) of the function

u(x) = e−x
2

.

You may use the integral
∫
∞

−∞
e−(t+ix/2)

2

dt =
√
π.

iii) (9 marks) Use the relation between the Fourier transform and the

Fourier transform of its derivative Fu′(x) = ixFu(x) and the result

of ii) to compute the Fourier transform Fu(x) of the function

u(x) = 2(8x2 + 3x− 3)e−x2.

iv) (8 marks) Use Fourier transforms to solve the Fredholm integral equa-

tion for φ(x)

e−x
2

= κ

∫
∞

−∞

e−(x−s/λ)
2

φ(s/λ)ds,

where λ, κ ∈ R.

Internal Examiner: Dr. A. Fring
External Examiners: Professor J. Billingham

Professor E. Corrigan



Mathematical Methods II

Solutions Exam 08

1) i) For an analytic function f(x, y) = u(x, y) + iv(x, y) on a domain D the Cauchy-
Riemann equations are

∑
= 25

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

1
Therefore with u(x, y) = cosh x cos y follows

∂u

∂x
= cos y sinh x =

∂v

∂y
⇒ v = sinh x

∫
cos ydy = sinh x sin y + sinh xg(x)

∂u

∂y
= − sin y cosh x = −∂v

∂x
⇒ v = sin y

∫
cosh xdx = sinh x sin y + sinh yh(y)

such that g(x) = h(x) = 0 and f(x, y) = cosh x cos y + i sinh x sin y. 4

ii) Definition: The transformation

w = T (z) =
az + b

cz + d
for ad− bc �= 0; a, b, c, d ∈ C

is called the linear fractional transformation. 1

Theorem: The linear fractional transformation w = T (z) maps three distinct
points z1, z2, z3 uniquely into three distinct points w1, w2, w3. The map is deter-
mined by the equation

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.

3

Solving this for z1 = i, z2 = 0, z3 = 1, w1 →∞, w2 = 3i, w3 = −1 gives

(w2 + 1)

(w + 1)
=

(z − i)(0− 1)

(z − 1)(0− i)
⇒ w = T (z) =

(i− 4)z + 3

z − i
.

5

iii) We can write

T c�=0(z) =
az + b

c(z + d/c)
=
a(z + d/c)− ad/c+ b

c(z + d/c)
=
a

c
+
b− ad/c

cz + d
.

Defining the translation map f∆T (z) = z +∆, the rotation map f z0R (z) = zz0 and
the inversion map fI(z) = z−1 this can be brought into the form 5

T c �=0(z) = f
a/c
T ◦ f (bc−ad)/cR ◦ fI ◦ fdT ◦ f cR(z).

For c = 0 the linear fractional transformation T (z) can be written as 2

T c=0(z) = f
b/d
T ◦ fa/dR (z).

1



iv) The set of linear fractional transformations constitutes a group, such that T1(z) ◦
T2(z) is also a linear fractional transformation (by the closure of the group). 1

v) We have

T1(z) =
z − 1

z − i
and T2(z) =

z − i

z − 1

fI ◦ T1 ◦ T2(z) = fI(
z−i
z−1

− 1
z−i
z−1

− i
) = fI(

1

z
) = z

f 1−iR ◦ f−1T ◦ T1(z) = (1− i)(
z − 1

z − i
− 1) =

2i

z − i
.

3

2) i) Schwarz-Christoffel theorem: Given an n-sided polygon with vertices wi and ex-
∑

= 25
terior angles θi = µiπ for 1 ≤ i ≤ n. Then there exist always n real numbers xi
for 1 ≤ i ≤ n together with a complex constant c ∈ C and an analytic function
f : z 	→ w whose derivative is given by

f ′(z) = c
n−1∏

i=1

(z − xi)
−µi c ∈ C,−1 < µi < 1,

which maps the upper half plane one-to-one onto the interior of the polygon. The
points are mapped as wi = f(xi) for 1 ≤ i ≤ n− 1 and wn = limx→±∞ f(x). 3

ii) The exterior angles at w1, w2, w3 are 3π/4, π/2 and 3π/4. According to the
Schwarz-Christoffel theorem the map is therefore given as

f ′(z) = c(z + 1)−3/4(z − 1)−1/2.

Therfore

f(z) = c

∫ z

1

dẑ(ẑ + 1)−3/4(ẑ − 1)−1/2 + c̃.

We have
f(1) = w2 = 0 ⇒ c̃ = 0.

We also have

f(−1) = c

∫ −1

1

dẑ(ẑ + 1)−3/4(ẑ − 1)−1/2

= c(−1)
∫ 1

−1

dẑ(ẑ + 1)−3/4(1− ẑ)−1/2(−1)−1/2

= icκ = w1 = ia

and therefore
c = a/κ.

This means the transformation which maps the upper half plane onto the specified
isosceles right triangle is

f(z) =
a

κ

∫ z

1

dẑ(ẑ + 1)−3/4(ẑ − 1)−1/2.

2



The Schwarz-Christoffel theorem guarantees the existence of this map. 19

(In addition one may verify that

w3 =
a

κ

∫ ∞

1

dẑ(ẑ + 1)−3/4(ẑ − 1)−1/2 = a,

but this was not asked.)

iii) The corresponding figure is

3

3) i) Definition: The function f(x) is said to have exponential growth α if there
exists a constant µ such that

∑
= 25

|f(x)| ≤ µeαx for x > 0, with α, µ ∈ R.

2

Definition: The Laplace transform Lu(x) of a piecewise smooth function f(x)
with exponential growth α is defined as

Lf(x) :=
∫ ∞

0

f(t)e−txdt for x > α.

3

ii) Compute

L−1v(x) = 1

2πi

γ+i∞∫

γ−i∞

ω

t2 − ω2
etxdt.

Parameterize z = ε+ reiθ and compute

1

2πi

∮

Γ

ω

z2 − ω2
ezxdz =

2πi

2πi
Res
z0=±ω

ω

(z − ω)(z + ω)
ezx =

1

2
exω − 1

2
e−xω = sinhωx

3



In order to show that 8

γ+i∞∫

γ−i∞

t

t2 − ω2
etxdt =

∮

Γ

z

z2 − ω2
ezxdz

we have to guarantee that the integral over, say γ, parameterized by reiθ for θ
from π/2 to 3π/2 vanishes as r→∞. Compute

∣∣∣∣∣∣

∮

γ

ω

z2 − ω2
ezxdz

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
ωeεx

3π/2∫

π/2

reiθ

(ε+ reiθ)2 − ω2
ere

iθxdθ

∣∣∣∣∣∣∣

With

∣∣reiθ
∣∣ = r

∣∣∣ere
iθx
∣∣∣ = erx cos θ ≤ 1 for

π

2
≤ θ ≤ 3

2
π

∣∣(ε+ reiθ)2 − ω2
∣∣ > r2 − ω2

follows
∣∣∣∣∣∣∣
eεx

3π/2∫

π/2

reiθ

(ε+ reiθ)2 − ω2
ere

iθxdθ

∣∣∣∣∣∣∣
< eεx

r

r2 − ω2
→ 0 for r→∞.

⇒ L−1v(x) = sinhωx

12

4) i) Non-coaxial cylinders:
∑

= 25

2

ii) As there is no ϑ dependence we have ∂φ/∂ϑ = 0, such that

∆φ =
∂2φ

∂r2
+

1

r2
∂2φ

∂ϑ2
+

1

r

∂φ

∂r
= 0

4



reduces to

∆φ = 0 ⇔ r
∂2φ

∂r2
+
∂φ

∂r
= 0.

For φ(r) = (φ0 − φ1)
ln r
ln r0

+ φ1 compute

∂φ
∂r

= (φ0−φ1)
ln r0

1
r

∂2φ
∂r2

= − (φ0−φ1)
ln r0

1
r2

}

⇒ ∆φ = 0.

4

iii) Use the fact that the map is a linear fractional transformation and that the latter
maps three points uniquely onto three points. Take therefore three distinct points
on the unit circle in the z-plane z1 = 1, z2 = −1, z3 = i and compute

f(1) = −1 ∈ |w| = 1

f(−1) = 1 ∈ |w| = 1

f(i) =
i− c

ic− 1
=

(i− c)(−ic− 1)

(ic− 1)(−ic− 1)
=

2c

1 + c2
+ i

(c2 − 1)

1 + c2

We see that [Re f(i)]2 + [Im f(i)]2 = 1, such that f(i) ∈ |w| = 1. 4

From the geometry we have

f(0) = r0 ⇒ c = r0

f(2x0) = −r0 ⇒ 2x0 − r0
2x0r0 − 1

= −r0

Combining these equations gives a quadratic equation in r0

2x0 − r0 + 2x0r
2
0 − r0 = 0 ⇒ r(1/2)0 =

1

2x0
± 1

2x0

√
1− 4x20.

Taking now x0 = 2/5

r
(1/2)
0 =

5

4
± 5

4

√
1− 16/25 =

5

4
± 5

4

3

5
⇒ r

(1)
0 = 2, r

(2)
0 =

1

2

Since the cylinder at radius r0 has to be in the inside of the cylinder with radius
r = 1, i.e. r0 < 1, we discard the solution r

(1)
0 . Therefore we the resulting

conformal map is

f(z) =
z − 1/2

z/2− 1
=

2z − 1

z − 2
.

12

iv)

φ(r) = φcoaxial(f(r)) = (φ0 − φ1)
ln(f(r))

ln r0
+ φ1 = −220

ln
∣∣2z−1
z−2

∣∣

ln 2
V.

3

5



5) i) Definition: The convolution of two functions u(x) and v(x) is defined as
∑

= 25

u ' v(x) =

∫ ∞

−∞

u(t)v(x− t)dt.

From the definition follows 1

F(u ' v)(x) =

∫ ∞

−∞

(u ' v)(t)e−itxdt =

∫ ∞

−∞

dt

∫ ∞

−∞

ds u(s)v(t− s)e−itx

=

∫ ∞

−∞

ds u(s)

(∫ ∞

−∞

dt v(t− s)e−itxeisx
)
e−isx

=

∫ ∞

−∞

ds u(s)e−isx
(∫ ∞

−∞

dt v(t)e−itx
)

= F(u)F(v).

4

ii) We compute

Fu(x) =

∞∫

−∞

e−t
2

e−itxdt =

∞∫

−∞

e−(t+ix/2)
2

e−x
2/4dt

= e−x
2/4

∞∫

−∞

e−(t+ix/2)
2

dt =
√
πe−x

2/4.

We used the integral
∫∞
−∞

e−(t+ix/2)
2

dt =
√
π. 3

iii) Define v(x) = e−x
2

. Then v′(x) = −2xe−x2and v′′(x) = (4x2 − 2)e−x
2

. Therefore

u(x) = αv(x) + βv′(x) + γv′′(x)

=
[
α− 2βx+ γ(4x2 − 2)

]
e−x

2

= (16x2 + 6x− 6)e−x
2

⇒ α− 2γ = −6, 4γ = 16, −2β = 6⇒ γ = 4, β = −3, α = 2⇒

u(x) = 2v(x)− 3v′(x) + 4v′′(x)

Therefore

Fu(x) = 4Fv′′(x)− 3Fv′(x) + 2Fv(x)
= 4ixFv′(x)− 3ixFv(x) + 2Fv(x)
= 4(ix)2Fv(x)− 3ixFv(x) + 2Fv(x)
=

√
π(−4x2 − 3ix+ 2)e−x

2/4.

9

6



iv) First scale s→ λs, such that the equation becomes

e−x
2

= λκ

∫ ∞

−∞

e−(x−s)
2

φ(s)ds

Introducing the function v(x) = e−x
2

, this can be rewritten as

v(x) = λκv ∗ φ(x)

Acting on this equation with the Fourier operator F gives

Fv(x) = F(λκv ∗ φ)(x) = λκF(v ∗ φ)(x) = λκFv(x)Fφ(x).

Therefore we obtain
1

λκ
= Fφ(x),

such that

φ(x) = F−1 1

λκ
(x) =

1

λκ
F−11(x) = 1

λκ
δ(x).

8
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