CITY UNIVERSITY London

BSc Degrees in Mathematical Science Mathematical Science with Statistics Mathematical Science with Computer Science Mathematical Science with Finance and Economics MMath Degrees in Mathematical Science

PART III EXAMINATION

Mathematical Methods

May 2009

Time allowed: 2 hours

Full marks may be obtained for correct answers to THREE of the FIVE questions.

If more than THREE questions are answered, the best THREE marks will be credited.

Turn over . . .

Each question carries 25 marks.

- 1) (i) (5 marks) State the definition for the cross ratio and a theorem involving it, which may be used to decide whether four points in the complex plane lie on a line or a circle. Compute the cross ratio $(3, -3, 3i, z_4)$ and use the theorem to decide whether the points $z_1 = 1 + i\sqrt{8}$ and $z_2 = 3 + i$ lie on the circle |z| = 3.
 - (ii) (11 marks) The linear fractional transformation is defined as

$$w = T(z) = \frac{az+b}{cz+d}$$
 for $ad - bc \neq 0; a, b, c, d \in \mathbb{C}$.

For which choices of a, b, c, d does this reduce to a translation, a rotation and the inversion map? Why is the case ad - bc = 0 excluded? Determine the linear fractional transformation T(z), which maps the points $z_1 = i, z_2 = 0, z_3 = 1$ in the z-plane onto $w_1 = -1, w_2 \rightarrow \infty, w_3 = -i$ in the w-plane. Is this map unique?

(iii) (9 marks) Using the parameterization of all possible circles and lines in the z-plane

$$\alpha(x^2 + y^2) + \beta x + \gamma y + \delta = 0 \quad \text{for } \alpha, \beta, \gamma, \delta \in \mathbb{R},$$

prove for the inversion map obtained in (ii) that it always maps circles and lines into circles and lines. For which values of $\alpha, \beta, \gamma, \delta$ are circles mapped into circles, circles mapped into lines, lines mapped into circles and lines mapped into lines?

- 2) (i) (3 marks) State the Schwarz-Christoffel theorem.
 - (*ii*) (11 marks) Determine the Schwarz-Christoffel transformation f(z), which maps the upper half plane onto an equilateral triangle. Map the points $x_1 = 1$ and $x_2 = -1$ to $w_1 = 0$, $w_2 = a$. Express your result in terms of the quantity

$$\gamma = \int_{-1}^{1} d\hat{z} \frac{1}{(1-\hat{z})^{2/3}} = \frac{\sqrt{\pi}}{2^{1/4}} \frac{\Gamma(1/3)}{\Gamma(5/6)} \approx 4.20655.$$

- (*iii*) (10 marks) Verify for the function f(z) constructed in (*ii*) that the points $x \to \pm \infty$ are mapped to the third vertex of the triangle.
- (iv) (1 mark) Draw the corresponding figure in the *w*-plane.

Turn over . . .

- (i) (6 marks) Define the exponential growth of a function f(x) and subsequently define the Laplace transform Lf(x) for the function f(x). State the convolution theorem for the Laplace transform.
 - (*ii*) (4 marks) For a piecewise smooth function u(x), with reasonable exponential growth, the Laplace transform of its *n*th derivative $\mathcal{L}u^{(n)}(x)$ may be expressed as

$$\mathcal{L}u^{(n)}(x) = x^n \mathcal{L}u(x) - \sum_{k=0}^{n-1} x^{n-k-1} u^{(k)}(0).$$

Prove this formula for n = 1, n = 2 and n = 3.

- (*iii*) (2 marks) Compute the Laplace transform for the Dirac delta function $v(x) = \delta(x - \alpha)$ and the exponential function $w(x) = e^{-\alpha x}$, with α being a real number.
- (iv) (13 marks) Using Laplace transforms, solve the first order differential equation

$$u'(x) + u(x) = 5H(x) - 3H(x - \pi)$$

with boundary condition u(0) = 5. The function H(x) is the Heaviside function. 4) The Fourier transform $\mathcal{F}u(x) = \hat{u}(x)$ of a piecewise smooth and absolutely integrable function u(x) on the real line is defined as

$$\mathcal{F}u(x) := \hat{u}(x) = \int_{-\infty}^{\infty} u(t)e^{-itx}dt.$$

- (i) (5 marks) Define the convolution u ★ v(x) of two functions v(x) and u(x). Then show that the Fourier transform of the convolution of two functions v(x) and u(x) equals the product of the Fourier transforms of v(x) and u(x).
- (*ii*) (3 marks) Compute the Fourier transforms $\mathcal{F}u(x)$ of the function

$$u(x) = e^{-x^2}.$$

You may use the integral $\int_{-\infty}^{\infty} e^{-(t+ix/2)^2} dt = \sqrt{\pi}$.

(ii) (13 marks) Use the Fourier transformation method to show that the solution for the Schrödinger equation

$$i\frac{\partial\psi(x,t)}{\partial t} + \frac{\partial^2\psi(x,t)}{\partial x^2} = 0$$

with initial condition $\psi(x,0) = g(x)$ and asymptotic behaviour

$$\lim_{x \to \pm \infty} \psi(x, t) = 0, \lim_{x \to \pm \infty} \partial \psi(x, t) / \partial x = 0$$

is given by

$$\psi(x,t) = \frac{1}{2\sqrt{\pi it}} \int_{-\infty}^{\infty} dy g(y) e^{\frac{i}{4t}(x-y)^2}$$

Turn over . . .

- 5) Consider two infinite cylinders placed non-coaxially with $|z x_0| = x_0$ and |z| = 1. The cylinders are at constant potential $\phi_1 = 0V$ at |z| = 1 and $\phi_0 = 50V$ at $|z x_0| = x_0$. The value of the center of the smaller cylinder and its radius is taken to be $x_0 = 4/17$. Find the potential in the *xy*-plane between the two cylinders.
 - (i) (2 marks) Draw the corresponding figure.
 - (*ii*) (4 marks) Verify first that the potential for two infinitely long concentric cylinders with radii r_0 and r = 1 at potentials ϕ_0 , ϕ_1 is given by

$$\phi(r) = (\phi_0 - \phi_1) \frac{\ln r}{\ln r_0} + \phi_1.$$

Hint: The Laplace equation in polar coordinates is

$$\Delta \phi = \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \vartheta^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} = 0.$$

(iii) (16 marks) Verify that the map

$$w = f(z) = \frac{z - \kappa}{\kappa z - 1}$$
 with $\kappa \in \mathbb{R}$

leaves the circle with the radius |z| = 1 invariant, that is the image is |w| = 1. Find the constants the constant κ and r_0 such that the circle $|z - x_0| = x_0$ is mapped onto $|w| = r_0$.

(iv) (3 marks) Use the results from (ii) and (iii) to compute the potential for the non-coaxial cylinders.

Internal Examiner:	Professor A. Fring
External Examiners:	Professor J. Billingham
	Professor E. Corrigan

Mathematical Methods II (2009/_

Jolutions and marking scheme:

1) i) . Ile cross ratio (2, 2, 2, 2, 2, 24) is the image of 24 which maps the points (2, 2, 2, 23) onto (0, 1, 04)

$$T_{c}(z_{4}) = \frac{(z_{4} - z_{1})(z_{2} - z_{3})}{(z_{4} - z_{3})(z_{2} - z_{1})}$$

- It was relie $(2_1, 2_2, 2_3, 2_4)$ is real if and only if the four paints $2_{i_1}, 2_{i_2}, 2_{i_3}, 2_{i_4}$ lie on a circle or a line, • $T_c(2_4) = \frac{(2_4 - 3)(-3 - 3)i}{(2_4 - 3)(-3 - 3)} = \frac{2(2_4 - 3)(1 + i)}{2(2_4 - 3i)}$
 - Compute $T_c(1+i\mathcal{V}_8) = \frac{(1+i\mathcal{V}_8-3/(1+i))}{2(1+i\mathcal{V}_8)-6i} = -1-\mathcal{V}_2 \in [\mathbb{R}] = 2, in on Me$ circle (2)=3

$$T_{c}(3+i) = \frac{i(1+i)}{2(3-2i)} = \frac{1}{26}(-5+i) \not\in |R| = 2_{2} \text{ is not on the}$$

$$\operatorname{cincle} |2|=3. \quad 5$$
ii). translation: $a=1, b=4, c=0, d=1$

$$T(21 \rightarrow 7_{T}^{4}(21 = 2+4)$$

$$\operatorname{ration} i \quad a=2_{0}, b=0, c=0, d=1$$

$$T(21 \rightarrow 7_{T}^{4}(21 = 2+4)$$

· inserving map: a=0, b=1, c=1, d=0 $T(2) \rightarrow f_{I}(2) = 1$

$$T'(2) = \frac{\alpha}{(2+d)^2} - \frac{(\alpha^2+b/c)}{(c^2+d)^2} = \frac{\alpha((2+d)-c(\alpha^2+b)}{(c^2+d)^2} = \frac{\alpha d-bc}{(c^2+d)^2} = 0$$

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$

Lubstituting 2, 22, 23, 14, 142, 13 into this equation
$\frac{(w + i)}{(w + i)} = \frac{(2 - i)(-i)}{(2 - i)(-i)}$
=) $(w+1) = \frac{(z-i)}{i(z-1)} (w+i) =) w \left(1+i\frac{z-i}{z-i}\right) = \frac{z-i}{z-1} - 1$
$=) w\left(\frac{2-i+i2+l}{2-i}\right) = \frac{2-i-2+l}{2-i} = w\left(\frac{2(1+i)}{2-i}\right) = \frac{1-i}{2-i}$
$=) w = \frac{1-i}{1+i} \frac{1}{2} = -\frac{i}{2}$
" This may is unique by the theorem quoted.
iii) Circles and lins in the 2-gelone:
$ \left(\left. \left(\left. \right)^{2} \right. \right)^{2} \right) + \left. \right ^{2} \left. \left. \right)^{2} \right ^{2} + \left. \left. \right)^{2} + \left. \left. \right)^{2} \right ^{2} + \left. \left. \right)^{2} + \left. \left. \right)^{2} \right ^{2} + \left. \left. \right)^{2} \right ^{2} + \left. \left. \right)^{2} + \left$
with $2 = ++iY$, $w = \mathbf{K} + iV$;
$f_{I} = w = \frac{1}{2} = \frac{1}{x+i\lambda} = \frac{x-i\lambda}{(x+i\lambda)(x-i\lambda)} = \frac{1}{x+i\lambda^{2}} + i\frac{-y}{(x+i\lambda)^{2}}$
$z = \frac{1}{w} = \frac{\alpha}{\alpha^2 + v^2} + i \frac{-v}{\alpha^2 + v^2}$ $+ \frac{1}{v} + \frac{1}{v}$
The equation (*/ is mayzed into
$ d\left(\frac{\alpha^{2}}{(\alpha^{2}+\nu^{2})^{2}}+\frac{\nu^{2}}{(\alpha^{2}+\nu^{2})^{2}}\right)+\beta\frac{\alpha}{\alpha^{2}+\nu^{2}}-\gamma\frac{\nu}{\alpha^{2}+\nu^{2}}+\delta=0 \left \cdot(\alpha^{2}+\nu^{2})^{2}+\frac{\alpha^{2}+\nu^{2}}{(\alpha^{2}+\nu^{2})^{2}}\right +\beta\frac{\alpha}{\alpha^{2}+\nu^{2}}+\delta=0 \left \cdot(\alpha^{2}+\nu^{2})^{2}+\frac{\alpha}{\alpha^{2}+\nu^{2}}+$
$=) \mathcal{A} + \beta u - \mathcal{F} V + \mathcal{F} \left(u^2 + v^2 \right) = 0$
Circles are mayned into circles for 2 #0, 5 #0 (9)
linels are mygred into lines for $\lambda \neq 0$, $\delta = 0$ $\overline{T} = 29$
Lines are may with lines for $d=0$, $\delta=0$
Lines are mayed into circles for $d=0$, $\delta \neq 0$

2/i) Given an n-intert polygon with ventices W: and esterior. angles $\theta_i = \mu_i \pi$ for 15 is n, The there said always n real numbers X: for 1 = i = n together with a complex number CEC and an analytic function f: 2 I w whose desiration is given by $f'(z) = c \prod_{i=1}^{n-1} (z - x_i)^{-n_i} - 1 < n_i < 1$ CEC which mays the apper half place are - to - one arto the interior of the polygon. The paints are mapped as Wi = f(til for l'= i=n-1 and $w_n = \lim_{x \to \pm \infty} f(x)$. iil Ite exterior angles for an equilateral triangle are Q: = 27 i=12,3. $f'(z) = c \prod_{i=1}^{2} (z - x_i)^{-\frac{2}{3}}$ with t = 1 and t = -1 =) $f'(z) = c (z + 1)^{-\frac{2}{3}} (z - 1)^{-\frac{2}{3}}$ integrating $F(2) = c \int dz (z+1)^{-\frac{2}{3}} (z-1)^{-\frac{2}{3}} + K$ ($K \in C$ $f(i) = w_i = 0 = \frac{1}{2} \frac{1}{k} = 0$ $F(-1) = c \int d\bar{z} (\bar{z} + 1)^{-\frac{2}{3}} (\bar{z} - 1)^{-\frac{2}{3}} = c \int d\bar{z} (1 - \bar{z}^2)^{-\frac{2}{3}} e^{-i\pi 2}$ $= c e^{-\frac{i\pi^{2}}{3} + i\pi^{\prime}} \sqrt{\frac{2}{2}} \frac{1}{(1 - \tilde{z}^{2}/\frac{2}{3})} = c e^{\frac{i\pi}{3}} + w_{2} = a$ =) $c = \alpha e^{-\frac{i\pi}{3}}$ $\rightarrow f(z) = \frac{\alpha e^{-\frac{i\pi}{3}}}{y} \int d\bar{z} (\bar{z}^2 - 1)^{-\frac{2}{3}}$

We should have

$$\frac{15}{2} \sum_{n=1}^{\infty} \sum_{i=1}^{n} \sum_{i=1}$$

=)
$$u(x) = 5 H(x) - 3 V * H(x) + 3 V * W(x)$$

$$u_{\{k\}} = 5 H_{\{k\}} - 3 \int_{-\infty}^{+\infty} 5(\epsilon - \pi) H(x - \epsilon) \delta t + 3 \int_{-\infty}^{+\infty} \delta(\epsilon - \pi) e^{-(x - \epsilon)} dt$$

$$\alpha(x) = 5 H(x) - 3 H(x - \pi) + 3 e^{-(x - \pi)}$$

$$u_{[A]} = \begin{cases} 5 + 3e^{-(A-T)} & for \quad 0 \le x \le T_T \\ 2 + 3e^{-(X-T)} & for \quad T \le x \le \infty \end{cases}$$
(13)

16

ě i i/

=)

 $\mathcal{L} v[\lambda] = \int_{0}^{\infty} \int_{0}^{\infty} (t - \lambda) e^{-tx} dt = e^{-\lambda x} \quad \text{for } \lambda \ge 0$ $\mathcal{L} v[\lambda] = \int_{0}^{\infty} e^{-\lambda t} e^{-tx} dt = \int_{0}^{\infty} e^{(\lambda - x)t} dt = \frac{e^{(k - x)t}}{\lambda - x} \int_{0}^{\infty} \frac{1}{x - \lambda}$ $\mathcal{L} = 25 \quad \text{for } x \ge \lambda$

$$V'(x) = e^{-x^{2}}$$

$$V'(x) = -2 e^{-x^{2}} + 4x^{2} e^{-x^{2}}$$

$$V'''(x) = -2 e^{-x^{2}} + 4x^{2} e^{-x^{2}}$$

$$V'''(x) = 12 + e^{-x^{2}} - 8 + 3 e^{-x^{2}}$$

=) $U(k) = 2V(x) + \beta V'(k) + \gamma V''(k) + \delta V'''(k)$

$$= \left(2 - 2 \times \beta - 2 \times + 4 \times^{2} \times + 12 \times \sigma - 8 \times^{3} \sigma \right) e^{-x^{2}}$$

$$= \left[\left(d^{-2} + 1 + (12 \cdot \sigma - 2\beta) \times + 4 \times x^{2} - 8 \cdot \sigma \times^{3} \right) e^{-x^{2}} \right]$$

$$= \left(5 + 20 \times -4 \times^{2} - 16 \times^{3} \right) e^{-x^{2}}$$

$$\begin{array}{c} |i|| & \text{If } may is a linear functional branchempting into the pairs, \\ i.e. More pairs as margin compared into the pairs, \\ Interpreter pairs $(2, z-1, 2, z-1, 2_3 = i) \in (2/z) = 1 \\ \text{Compthend pairs } (2, z-1, 2, z-1, 2_3 = i) \in (2/z) = 1 \\ \text{Compthend pairs } (2, z-1, 2, z-1, 2_3 = i) \in (2/z) = 1 \\ \text{Compthend pairs } f(i) = -1 \in |W| = 1 \\ \text{The first } f(i) = -1 \in |W| = 1 \\ \text{The sensity } (2z \neq 0)^2 + (2z f(i))^2 = 1 \Rightarrow f(i) \in |W| = 1 \\ \text{The sensity } (2z \neq 0)^2 + (2z f(i))^2 = 1 \Rightarrow f(i) \in |W| = 1 \\ \text{The sensity } (2z \neq 0)^2 + (2z f(i))^2 = 1 \Rightarrow f(i) \in |W| = 1 \\ \text{The sensity } (2z \neq 0)^2 + (2z f(i))^2 = 1 \Rightarrow f(i) \in |W| = 1 \\ \text{The sensity } (2z \neq 0)^2 + (2z f(i))^2 = 1 \Rightarrow f(i) \in |W| = 1 \\ \text{The sensity } (2z \neq 0)^2 + (2z f(i))^2 = 1 \Rightarrow f(i) \in |W| = 1 \\ \text{The sensity } (2z \neq 0)^2 + (2z f(i))^2 = 0 \Rightarrow f(i) \in |W| = 1 \\ \text{The sensity } (2z \neq 0)^2 + (2z f(i))^2 = 0 \Rightarrow f(i) = \frac{1}{2z_0} + \frac{1}{2z_0$$$