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Each question carries 25 marks.

1) (i) (2 marks) The linear fractional transformation is defined as

w = T (z) =
az + b

cz + d
for ad− bc �= 0; a, b, c, d ∈ C.

For which choices of the constants a, b, c, d does this map reduce to a

translation by an amount ∆, a rotation of 90 degrees in the positive

mathematical sense, a scaling by a factor 2 and the inversion map?

(ii) (5 marks) Given the two linear fractional transformations

T1(z) =
z − 3i
z + i

and T2(z) =
z + 2

2z − 3
compute the linear fractional transformation equivalent to the com-

position

T2 ◦ T1(z).

Why is your answer expected to be a linear fractional transformation?

Decompose your result into a succession of rotations, translations and

inversions.

(iii) (8 marks) Determine the linear fractional transformation T (z), which

maps the points z1 = 2i, z2 = 1 + i, z3 = 0 in the z-plane onto w1 →
∞, w2 = 1, w3 = i in the w-plane. Present your answer in the form

as specified in (i). Is this map unique? Subsequently find the map

which maps z1 →∞, z2 = 1, z3 = i into w1 = 2i, w2 = 1 + i, w3 = 0.

(iv) (10 marks) Verify that for a certain range of values for λ the function

f(z) =
λ

2

(
z +

1

z

)
for λ ∈ C,

maps the exterior of a semicircle in the upper half plane with radius

one centered at the origin onto the lower half plane. Sketch the

corresponding figure. Quote the relevant theorem to argue that in

general for a specific choice of λ this map is unique.

Turn over . . .



2) (i) (3 marks) State the Schwarz-Christoffel theorem.

(ii) (11 marks) Determine the Schwarz-Christoffel transformation f(z),

which maps the upper half plane onto an isosceles triangle. Map the

points x1 = 1 and x2 = −1 to the two points w1 = 0, w2 = a ∈ R+,
where the interior angles of the triangle are both π/6 at these points.

Hint: You may use the integral

∫ 1

−1

dt
1

(1− t2)5/6 =
√
π
Γ(1/6)

Γ(2/3)
.

(iii) (10 marks) Determine the position of the third vertex of the triangle

in the w-plane using the fact that w3 = limz→±∞ f(z).

(iv) (1 mark) Draw the corresponding figure in the w-plane.

3) (i) (12 marks) Define the convolution u ⋆ v(x) of two functions v(x) and

u(x). Then show that the Laplace transform of the convolution of two

functions v(x) and u(x) equals the product of the Laplace transforms

of v(x) and u(x).

(ii) (13 marks) Use the Laplace transformation method to solve the fol-

lowing ordinary differential equation

y′′(x) + 2y′(x) + 5y(x) = 3e−x cosx.

The boundary conditions are y(0) = 2 and y′(0) = −2. The dashes

indicate derivatives with respect to x.

Hints: You may use the fact that

Ly′(x) = xLy(x)− y(0)

and

L(e−x cosλx) = 1 + x

(x+ 1)2 + λ2
for λ ∈ R.
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4) The Fourier transform Fu(x) = û(x) of a piecewise smooth and absolutely

integrable function u(x) on the real line is defined as

Fu(x) := û(x) =
∫
∞

−∞

u(t)e−itxdt.

(i) (4 marks) Define precisely what is meant by a piecewise smooth func-

tion and an absolutely integrable function. Provide an example for

a function which is not piecewise smooth and also an example for a

function which is not absolutely integrable.

(ii) (3 marks) Compute the Fourier transform Fu(x) of the function

u(x) = e−x
2

.

You may use the integral
∫
∞

−∞
e−(t+ix/2)

2

dt =
√
π.

(iii) (9 marks) Use the relation between the Fourier transform and the

Fourier transform of its derivative Fu′(x) = ixFu(x) together with
the result of (ii) to compute the Fourier transform Fu(x) of the

function

u(x) = 2P3(x)e
−x2 ,

where P3(x) is a Legendre polynomial of order three. The Legendre

polynomial of order n is generated from

Pn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
.

(iv) (9 marks) Use the Fourier transformation method to solve the fol-

lowing integral equation for φ(x)

h(x) =

∫
∞

−∞

g(x− s)φ(s)ds,

where

h(x) =

{
1 for |x| ≤ 2
0 for |x| > 2 and g(x) =

{
1 for |x| ≤ 1
0 for |x| > 1 .

Hint: You may use Fδ(x + λ) = eiλx, where δ(x) denotes the Dirac
delta function.

Turn over . . .



5) (i) (22 marks) Use a Laplace transform in t to solve the wave equation

φxx(x, t) = φtt(x, t)

subject to the initial conditions φ(x, 0) = cosx for 0 < x < π,

φt(x, 0) = 0 and φ(π/2, t) = 0 for t > 0.

Hint: You may use the fact that

Ly′(x) = xLy(x)− y(0)

and

L (cosλx) = x

x2 + λ2
.

(ii) (3 marks) Verify your solution.

Internal Examiner: Professor A. Fring
External Examiners: Professor J. Billingham

Professor E. Corrigan
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MA3605 Mathematical Methods II

Solutions and marking scheme for exam May 2010

������������: Full marks are obtained for correct answers to three of the five questions.

Each question carries 25 marks.

(All questions and aswers are unseen. Definitions, theorems, the proof in 3(i) and 4(ii)

have been seen.)

1. (i) The notations of the lecture are 2

f∆T (z) := z +∆, fz0R (z) := zz0 and fI(z) :=
1

z
,

where it is understood that fz0R is a simultaneous scaling and rotation. With

T (z) =
az + b

cz + d

we therefore have

T (z) → f∆T (z) for a = 1, b = ∆, c = 0, d = 1,

T (z) → f e
iπ/2

R (z) for a = eiπ/2, b = 0, c = 0, d = 1,

T (z) → f e
iπ/2

R (z) for a = 2, b = 0, c = 0, d = 1,

T (z) → fI(z) for a = 0, b = 1, c = 1, d = 0.

(ii) With 5

T1(z) =
z − 3i
z + i

and T2(z) =
z + 2

2z − 3
we compute

T2 ◦ T1(z) =
z−3i
z+i + 2

2 z−3iz+i − 3
=

z − 3i+ 2z + 2i
2z − 6i− 3z − 3i =

3z − i

−z − 9i =
−3z + i

z + 9i
.

The result is expected to a be a also linear fractional transformation as the set

of all linear fractional transformations forms a group. By the closure property

of the group we expect T2 ◦ T1 to be a linear fractional transformation.

We can decompose this as

T2 ◦ T1(z) =
−3(z + 9i) + 27i+ i

z + 9i
= −3 + 28i

z + 9i

= f−3T ◦ f28iR ◦ fI ◦ f9iT (z).
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(iii) We use the following 8

Theorem : The linear fractional transformation w = T (z) maps three dis-

tinct points z1, z2, z3 uniquely into three distinct points w1, w2, w3. The map is

determined by the equation

(w −w1)(w2 −w3)

(w −w3)(w2 −w1)
=
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.

First we take the limit

lim
w1→∞

(w −w1)(w2 −w3)

(w −w3)(w2 −w1)
=
(w2 −w3)

(w −w3)
=
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.

Substituting the remaining values gives

(1− i)

(w− i)
=
(z − 2i)(1 + i− 0)
(z − 0)(1 + i− 2i) .

Solving this for w gives

w = T (z) =
2− z

z − 2i .

The remaining map is simply the inverse of T (z). Thus we solve

z =
2−w

w − 2i
for w, which yields

w = T−1(z) =
2iz + 1

z + 1
.

(iv) We have 10

f(z) =
λ

2

(
z +

1

z

)
for λ ∈ C.

First we need to verify that the boundaries are mapped correctly:

• The semicircle ÂBC is parameterized by z = eiθ for 0 ≤ θ ≤ π

⇒ f(z) = λ/2(eiθ + e−iθ) = λ cos θ

⇒ for λ ∈ R the image of the semicircle is the interval [−λ, λ]
• The interval (1,∞) ≡ CD is parameterized by z = reiθ for θ = 0 and r ∈

(1,∞)

— 2 —
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⇒ f(z) = λ/2(r + r−1) ∈ λ(1,∞)
• The interval (−∞,−1) ≡ EA is parameterized by z = reiθ for θ = π and

r ∈ (−∞,−1)
⇒ f(z) = λ/2(r + r−1) ∈ λ(−∞,−1)
This means the boundaries are mapped correctly.

The Riemann mapping theorem states:

Given a simply connected region D ⊂ C, which is not the entire plane and a

point z0 ∈ D. Then there exists an analytic function f : z �→ w which maps D

one-to-one onto the interior of the unit disk |w| < 1. The uniqueness of the map

can be achieved with the normalization condition f(z0) = 0 and f ′(z0) > 0.

As the upper half plane minus the region below the semicircle is simply con-

nected, this means we could have mapped this region either to the lower or the

upper half plane. It suffices to verify this for one point. We compute the image

for z = 2i, i.e. a point in the upper half plane

f(2i) =
λ

2

(
2i+

1

2i

)
=

λi

2

(
2− 1

2

)
=
3

4
iλ.

The image point is only in the lower half plane for λ ∈ R−.
By the Riemann mapping theorem this proves that the upper half plane minus

the region below the semicircle is uniquely mapped into the lower half plane.
∑
= 25

2. (i) Given an n-sided polygon with vertices wi and exterior angles θi = µiπ for 3

1 ≤ i ≤ n. Then there exist always n real numbers xi for 1 ≤ i ≤ n together

with a complex constant c ∈ C and an analytic function f : z �→ w whose

derivative is given by

f ′(z) = c
n−1∏

i=1

(z − xi)
−µi c ∈ C,−1 < µi < 1, (1)

which maps the upper half plane one-to-one onto the interior of the polygon.

The points are mapped as wi = f(xi) for 1 ≤ i ≤ n−1 and wn = limx→±∞ f(x).

(ii) The two exterior angles θi with i = 1, 2 at the points w1, w2 are θi = 5π/6. We 11

can therefore express the derivative (1) as

f ′(z) = c
2∏

i=1

(z − xi)
−5/6. (2)

Let us take next the points xi to be x1 = 1 and x2 = −1, such that

f ′(z) = c(z − 1)−5/6(z + 1)−5/6.

Integration (2) then yields

f(z) = c

z∫

1

dẑ(ẑ − 1)−5/6(ẑ + 1)−5/6 + c̃,

— 3 —
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with c̃ ∈ C some integration constant. Let us now fix the constants c and c̃ by

substituting the values for all vertices. We have taken here the lower limit to be

1 as this simply yields

f(1) = c̃ = w1 = 0.

Furthermore we have

f(−1) = c

∫
−1

1
dẑ(ẑ − 1)−5/6(ẑ + 1)−5/6 = w2 = a, (3)

lim
z→−∞

f(z) = c

∫
−∞

1
dẑ(ẑ − 1)−5/6(ẑ + 1)−5/6 = w3, (4)

lim
z→∞

f(z) = c

∫
∞

1
dẑ(ẑ − 1)−5/6(ẑ + 1)−5/6 = w3.

The constant c is determined from (3)

w2 = ce−iπ5/6
∫
−1

1
dẑ(1− ẑ2)−5/6 = eiπ/6c

√
π
Γ(1/6)

Γ(2/3)
⇒ c = e−iπ/6

a√
π

Γ(2/3)

Γ(1/6)

such that

f(z) = e−iπ/6
a√
π

Γ(2/3)

Γ(1/6)

z∫

1

dẑ(z − 1)−5/6(z + 1)−5/6.

(iii) Next we compute (4) 10

w3 = c

∫
−1

1
dẑ(ẑ − 1)−5/6(ẑ + 1)−5/6 + c

∫
−∞

−1
dẑ(ẑ − 1)−5/6(ẑ + 1)−5/6

= w2 + ce−iπ5/3
∫
−∞

−1
dẑ |ẑ − 1|−5/6 |ẑ + 1|−5/6

= w2 + ce−iπ2/3
∫
∞

1
dẑ |ẑ − 1|−5/6 |ẑ + 1|−5/6

= w2 + e−iπ2/3w3 = a+ e−iπ2/3w3.

Solving this for w3 gives

w3 =
a

1− e−iπ2/3
=

aeiπ/3

ei
π
3 − e−i

π
3

=
aeiπ/3

2i sinπ/3
=

aeiπ/3

i
√
3
=

ae−iπ/6√
3

.

(iv) w3 is in the lower half plane 1

∑
= 25

— 4 —
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3. (i) The convolution of two functions u(x) and v(x) is defined as 12

u ⋆ v(x) =

∫
∞

−∞

u(t)v(x− t)dt.

By definition of the Laplace transform we have

(Lu)(x)(Lv)(x)

=

∫
∞

0
u(t)e−txdt

∫
∞

0
v(s)e−sxds

=

∫
∞

0
dt

∫
∞

0
ds u(t)v(s)e−x(t+s).

Shifting now s→ s+ t we obtain

(Lu)(x)(Lv)(x) =
∫
∞

0
dt

∫
∞

t
ds u(t)v(s− t)e−xs.

Next we change the order of integration according to
∫
∞

0 dt
∫
∞

t ds→
∫
∞

0 ds
∫ s
0 dt.

The following figure provides an illustration of this.

To cover the entire integration area we can either sum up horizontal or vertical

slices. We then obtain

(Lu)(x)(Lv)(x) =
∫
∞

0
ds

∫ s

0
dt u(t)v(s− t)e−xs

=

∫
∞

0
ds

(∫
∞

−∞

dt u(t)v(s− t)

)
e−xs (5)

=

∫
∞

0
ds(u ⋆ v)(s)e−xs

= L(u ⋆ v)(x).

In (5) we have extended the integration limits to ±∞, by using the fact that

u(t) = v(t) = 0 for t < 0.

(ii) Acting on the differential equation with L 13

Ly′′(x) + 2Ly′(x) + 5Ly(x) = 3L(e−x cosx).

— 5 —
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Using now the first hint gives

Ly′(x) = xLy(x)− y(0),

Ly′′(x) = xLy′(x)− y′(0) = x2Ly(x)− xy(0)− y′(0).

The differential equation then becomes

x2Ly(x)− xy(0)− y′(0) + 2[xLy(x)− y(0)] + 5Ly(x) = 3L(e−x cosx).

Solving this for Ly(x) and using the second hint

L(e−x cosx) = 1 + x

(x+ 1)2 + 1
for λ ∈ R,

yields

Ly(x) = 2
1 + x

x2 + 2x+ 5
+ 3

1 + x

(x2 + 2x+ 5)[(x+ 1)2 + 1]

= 2
1 + x

x2 + 2x+ 5
+ 3

[
(1 + x)/3

[(x+ 1)2 + 1]
− (1 + x)/3

[(x+ 1)2 + 4]

]

=
(1 + x)

(x+ 1)2 + 4
+

(1 + x)

(x+ 1)2 + 1

= L(e−x cos 2x) + L(e−x cosx)

Acting on this equation with L−1 gives ∑
= 25

y(x) = e−x(cosx+ cos 2x)

4. (i) Definition: A function u(x) is said to be absolutely integrable when 4

∫
∞

−∞

|u(t)| dt <∞.

Definition: A function u(x) is said to be piecewise smooth when there exist a

finite number of points x1 < x2 < . . . < xn on the real axis such that

a) u(x) is continuous on all the intervals (-∞, x1), (x1, x2),. . . (xn,∞).

b) the left and right limits of u(x) exists on all points x1, x2, . . . , xn.

For instance, the function

u(x) =

{
1
x for x < 0

0 for x > 0

is not piecewise smooth as the left limit at x = 0 is not finite.

The Heavyside function (unit step function)

u(x) =

{
0 for x < 0

1 for x ≥ 0

is not absolutely integrable since
∫
∞

−∞
|u(t)| dt =

∫
∞

0 dt→∞.

— 6 —
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(ii) Clearly u(x) is piecewise smooth. From the definition of the Fourier transform 3

follows

Fu(x) =

∞∫

−∞

e−t
2

e−itxdt =

∞∫

−∞

e−(t+ix/2)
2

e−x
2/4dt

= e−x
2/4

∞∫

−∞

e−(t+ix/2)
2

dt =
√
πe−x

2/4,

where we used the integral
∫
∞

−∞
e−(t+ix/2)

2

dt =
√
π.

(iii) First we compute 9

P3(x) =
1

233!

d3

dx3
(
x2 − 1

)3

=
1

48

d2

dx2

[
3
(
x2 − 1

)2
2x
]

=
1

8

d

dx

[
2
(
x2 − 1

)
2x2 +

(
x2 − 1

)2]

=
1

8

[
4
(
2xx2 +

(
x2 − 1

)
2x
)
+ 2

(
x2 − 1

)
2x
]

=
1

2

(
5x3 − 3x

)
,

such that

u(x) = 2P3(x)e
−x2 =

(
5x3 − 3x

)
e−x

2

.

Next we define v(x) = e−x
2

. Then v′(x) = −2xe−x2 , v′′(x) = (4x2 − 2)e−x2 and

v′′′(x) = (12x− 8x3)e−x2 . Therefore

u(x) = αv(x) + βv′(x) + γv′′(x) + δv′′′(x)

=
[
(α− 2γ) + (12δ − 2β)x+ 4γx2 − 8δx3)

]
e−x

2

=
(
5x3 − 3x

)
e−x

2

Comparing coefficients gives

α− 2γ = 0, 12δ − 2β = −3, 4γ = 0 and − 8δ = 5,

which is solved by α = 0, β = −9/4, γ = 0 and δ = −5/8.Therefore

Fu(x) = −1
8

(
9Fv′(x) + 5Fv′′′(x)

)

= −1
8

(
18ix− 5ix3

)
Fv(x)

=
√
π
i

8

(
5x3 − 18x

)
e−x

2/4.

(iv) First we notice that the right hand side of 9

— 7 —
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h(x) =

∫
∞

−∞

g(x− s)φ(s)ds,

is a convolution between g(x) and φ(x), i.e. we can rewrite it as

h(x) = g ⋆ φ(x).

Acting on this with F gives

Fh(x) = F (g ⋆ φ) (x) = Fg(x)Fφ(x). (∗)

In the last equality we used the convolution theorem. We need to compute

Fh(x) and Fg(x) :

Consider the function

uλ(x) =

{
1 for |x| < λ

0 for |x| > λ
,

such that u1(x) = g(x) and u2(x) = h(x).

This part of the answer is not essential to obtain full marks:

• First we verify that u(x) is piecewise smooth. Except at x = ±λ the function

is continuous, such that only at these two point we might encounter a problem.

The left and right limits at these points exist. The left limits are

lim
ε→0

u(λ− ε) = 1 lim
ε→0

u(−λ− ε) = 0

and the right limits are

lim
ε→0

u(λ+ ε) = 0 lim
ε→0

u(−λ+ ε) = 1.

The function u(x) is also absolutely integrable
∫
∞

−∞

|u(t)| dt =
∫ λ

−λ
1dt = 2λ <∞. •

From the definition of the Fourier transform follows

Fu(x) =

∫ λ

−λ
e−itxdt =

i

x
e−itx

∣∣∣∣
λ

−λ

= 2
sinλx

x
.

This means equation (∗) can be written as

2
sin 2x

x
= 2

sinx

x
Fφ(x)

and therefore

Fφ(x) = 2 cosx.

Using the hint

F [δ(x+ 1) + δ(x− 1)] = eix + e−ix = 2 cosx = Fφ(x)

such that when acting with F−1 the function (distribution) φ(x) results to
∑
= 25

φ(x) = δ(x+ 1) + δ(x− 1).

— 8 —
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5. (i) We start by differentiating the Laplace transform of φ(x, t) in t twice with 22

respect to x
d2

dx2
Ltφ(x, t) = Ltφxx(x, t) = Ltφtt(x, t). (6)

In the last equality we used the wave equation. Using the first hint gives

Ltφtt(x, t) = tLtφt(x, t)− φt(x, 0)

= t2Ltφ(x, t)− tφ(x, 0)− φt(x, 0)

Using this together with the initial conditions (6) becomes a linear second order

differential for Ltφ(x, t)

d2

dx2
Ltφ(x, t) = t2Ltφ(x, t)− t cosx for 0 < x < π. (7)

This may be solved by

Ltφ(x, t) = A(t) sinx+B(t) cosx. (8)

From φ(π/2, t) = 0 follows A(t) = 0. Substituting (8) into (7) then gives

−B(t) cosx = t2B(t) cosx− t cosx ⇒ B(t) =
t

t2 + 1
.

Therefore

Ltφ(x, t) =
t

t2 + 1
cosx

and hence

φ(x, t) = cosxL−1t
(

t

t2 + 1

)
= cosx cos t.

We used the second hint with λ = 1.

(ii) We compute 3

φx(x, t) = − sinx cos t, φxx(x, t) = − cosx cos t,
φt(x, t) = − cosx sin t, φtt(x, t) = − cosx cos t.

Thus

φxx(x, t) = φtt(x, t)

Clearly

φ(x, 0) = cosx,

φt(x, 0) = − cosx sin 0 = 0,
φ(π/2, t) = cosπ/2 cos t = 0.

∑
= 25
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