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Each question carries 25 marks.

1) (i) (3 marks) The linear fractional transformation is defined as

w = T (z) =
az + b

cz + d
for ad− bc �= 0; a, b, c, d ∈ C.

Why is the restriction ad − bc �= 0 needed? For which choices of
the constants a, b, c, d does this map reduce to a translation by an
amount 2, a rotation of θ, a scaling by a factor −3 and the inversion
map?

(ii) (6 marks) Given the two linear fractional transformations

T1(z) =
z − 2
2z − i

and T2(z) =
2z − i

3iz − 2
compute the linear fractional transformation equivalent to the com-
position

T1 ◦ T2(z).
Why is your answer expected to be a linear fractional transformation?
Decompose your result into a succession of rotations, translations and
inversions.

(iii) (11 marks) Construct a conformal transformation that maps a circle
centered at z = 3 + 3i with radius r = 3 to the line passing through
the points w = i and w = −1. Determine also the map that maps
the line to the circle.

(iv) (5 marks) Determine the image of the circle with radius 2 through
the points z1 = −2i, z2 = −2 and z3 = −4− 2i which is mapped by

w = f(z) =
(4 + 4i)z + (8 + 16i)

z + (2 + 2i)

into the w-plane.
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2) (i) (12 marks) Find a domain on which the function

g1(z) = ln

(
z − 1
z2 − 9

)

is single valued and analytic. Provide two alternative constructions:
a) Take the principal branch cut for ln (z) and b) take the branch cut
for ln (z) to be R+.

(ii) (13 marks) Using the principal branch cut for ln (z) show that

g2(z) = arcsinh z

is single valued and analytic on C\{(−i∞,−i), (i, i∞)}.

3) (i) (5 marks) Define the exponential growth of a function f(x) and sub-
sequently define the Laplace tranform Lf(x) for the function f(x).

(ii) (20 marks) Compute the inverse Laplace transform L−1v(x) for the
function

v(x) =
5

x2 − 25 ,

by evaluating the Bromwich integral

L−1v(x) = 1

2πi

γ+i∞∫

γ−i∞

v(t)etxdt for γ > α,

where α is the exponential growth of L−1v(x).
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4) The Fourier transform Fu(x) = û(x) of a piecewise smooth and absolutely
integrable function u(x) on the real line is defined as

Fu(x) := û(x) =

∫
∞

−∞

u(t)e−itxdt.

(i) (7 marks) Define what is meant by the convolution of two functions
w(x) and v(x). Compute the convolution for the two identical func-
tions

w(x) = v(x) =

{
1 for |x| < µ
0 for |x| > µ

.

(ii) (10 marks) Show that the Fourier transform of the convolution of two
functions v(x) and u(x) equals the product of the Fourier transforms
of v(x) and u(x). Verify this explicitly for the function v(x) and u(x)
from (i).

(iii) (8 marks) Use the relation between the Fourier transform and the
Fourier transform of its derivative Fu′(x) = ixFu(x) together with∫
∞

−∞
e−t

2

e−itxdt =
√
πe−x

2/4 to compute the Fourier transform Fu(x)
of the function

u(x) = H3(x)e
−x2 ,

where H3(x) is a Hermite polynomial of order three. The Hermite
polynomial of order n is generated from

Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2

)
.
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5) The damped harmonic oscillator for a point particle of mass m fixed on a
spring with spring constant κwith external driving force F (t) and damping
λ is described by the equation

mẍ(t) + λẋ(t) + κx(t) = F (t). (1)

Here x is the vertical displacement of the particle as a function of time t
and as usual we denote ẋ ≡ dx/dt.

(i) (11 marks) Show, using Laplace transforms, that the solution to equa-
tion (1) subject to the initial conditions x(0) = ẋ(0) = 0 is given by

x(t) =
1

mω

∫
∞

0

ds F (t− s)e−µs sinωs.

Hint: You may use

Lu(n)(x) = xnLu(x)−
∑n−1

k=0
xn−k−1u(k)(0),

Lu(x) =
ω

(x− µ)2 + ω2
for u(x) = eµx sinωx,

Lu(x) =
x− µ

(x− µ)2 + ω2
for u(x) = eµt cosωt,

(ii) (2 marks) Specify now the external force to be a kick at t = 0.
Denoting by p the momentum transfer of this kick the external force
can be represented as

F (t) = pδ(t).

Compute the integral left in (i).

(iii) (12 marks) Specify now the external force to be a continuous sin-force
with frequency ω, perhaps an electric field when the mass is charged.
In this case the force is realised as

F (t) = F0 sin(ωt) for t ≥ 0.

Compute the integral left in (i).

Internal Examiner: Professor A. Fring
External Examiners: Professor J. Rickard

Professor E. Corrigan
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Solutions and marking scheme for exam May 2011

������������: Full marks are obtained for correct answers to three of the five questions.

Each question carries 25 marks.

(All questions and answers are unseen. Definitions, theorems, the proof in 4(ii) and 2(ii)

have been seen.)

1. (i) The restriction is needed as otherwise T ′(z) = ad−bc
(d+cz)2

= 0, i.e. the map would

just be a constant. The notations of the lecture are 3

f∆T (z) := z + ∆, fz0R (z) := zz0 and fI(z) :=
1

z
,

where it is understood that fz0R is a simultaneous scaling and rotation. With

T (z) =
az + b

cz + d

we therefore have

T (z) → f2T (z) for a = 1, b = 2, c = 0, d = 1,

T (z) → fe
iθ

R (z) for a = eiθ, b = 0, c = 0, d = 1,

T (z) → f−3R (z) for a = −3, b = 0, c = 0, d = 1,

T (z) → fI(z) for a = 0, b = 1, c = 1, d = 0.

(ii) With 6

T1(z) =
z − 2

2z − i
and T2(z) =

2z − i

3iz − 2
we compute

T1 ◦ T2(z) =
2z−i
3iz−2 − 2
2(2z−i)
3iz−2 − i

=
(2− 6i)z + (4− i)

7z
.

The result is expected to a be a also linear fractional transformation as the set

of all linear fractional transformations forms a group. By the closure property

of the group we expect T2 ◦ T1 to be a linear fractional transformation.

We can decompose this as

T1 ◦ T2(z) =

(
2

7
− 6i

7

)
+

4
7 − i

7

z

= f
2−6i
7

T ◦ f
4

7
−
i
7

R ◦ fI(z).
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(iii) We use the following 11

Theorem : The linear fractional transformation w = T (z) maps three dis-

tinct points z1, z2, z3 uniquely into three distinct points w1, w2, w3. The map is

determined by the equation

(w −w1)(w2 −w3)

(w −w3)(w2 −w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.

We select therefore three points on the circle z1 = 3i, z2 = 3, z3 = 6 + 3i and

three points on the line w1 = −1, w2 = i, w3 = 1 + 2i. Substituting these points

into the above formula gives

(w − (−1))(i− (1 + 2i))

(w − (1 + 2i))(i− (−1))
=

(z − 3i)(3− (6 + 3i))

(z − (6 + 3i))(3− 3i)
.

Solving this for w yields

w = T (z) =
z + 3

z − (3 + 6i)
.

The map from the line to the circle is the inverse of T (z). Therefore we solve

z =
w + 3

w − (3 + 6i)

for w, which gives

w = T−1(z) =
(3 + 6i)z + 3

z − 1
.

(iv) We know that the linear fractional transformation w = T (z) maps circles and 5

lines always into circles and lines. Since the points in the z-plane lie on a circle

the points in the w-plane must be on a line or a circle. We compute

f(−2i) =
(8 + 16i)− (8 + 8i)i

(2 + 2i)− 2i
= 8 + 4i

f(−2) = 4

f(−4− 2i) = 4i

We notice that these points lie on a circle with centre (4, 4i) and with radius

r = 4, which is the unique image.
∑

= 25

2. (i) The function g1(z) has three branch points at z = 1 and at z = ±3. For the

arguments of the logarithm we can write

z − 1 = |z − 1| eiθ1 and z ± 3 = |z ± 3| eiθ2/3

such that

g1(z) = ln

(
z − 1

z2 − 9

)
= ln(z−1)−ln(z−3)−ln(z+3) = ln

∣∣∣∣
z − 1

z2 − 9

∣∣∣∣+i(θ1−θ2−θ3)

— 2 —



MA3605 , Andreas Fring, Mathematical Methods II

We have now various choices for the restriction on θ1, θ2 and θ3 :

a) Assume the principal values for the logarithms:

−π < θ1, θ2, θ3 ≤ π

Let us now consider the different regions on the real axis:

• z ∈ (3,∞): On this part of the axis there is no problem as θ1, θ2 and θ3 are

all continuous when crossing the axis.

• z ∈ (1, 3): On this line segment θ1 and θ2 are continuous, but θ3 jumps and

therefore we require a cut.

• z ∈ (−3, 1): When crossing this part of the axis both θ1 and θ3 are discon-

tinuous. However, the relevant quantity, which is the difference θ1− θ2− θ3
is continuous. Above the axis we have θ2 = 0, θ1 = θ3 = π, such that

θ1 − θ2 − θ3 = 0 and below the axis we have θ2 = 0, θ1 = θ3 = −π and

therefore also θ1 − θ2 − θ3 = 0. This means no cut is required on this

segment.

• z ∈ (−∞, 3): On this line segment we have above the axis θ1 = θ2 = θ3 = π

such that θ1− θ2− θ3 = −π and below the axis we have θ1 = θ2 = θ3 = −π
such that θ1 − θ2 − θ3 = π. This means the function is discontinuous and

we need a branch cut to make it analytic.

Overall we only need therefore branch cut at the line segment (−∞,−1) and

(1, 3) in order to make the function g1(z) single valued and analytic. 6

b) Next we assume the cut for the logarithms to be at:

0 < θ1, θ2, θ3 ≤ 2π

Again we consider the different regions on the real axis:

• z ∈ (3,∞): On this line segment we have above the axis θ1 = θ2 = θ3 = 0

such that θ1 − θ2 − θ3 = 0 and below the axis we have θ1 = θ2 = θ3 = 2π

such that θ1−θ2−θ3 = −2π. This means the function is discontinuous and

we need a branch cut to make it analytic.

• z ∈ (1, 3): On this line segment we have above the axis θ3 = π, θ1 = θ2 = 0,

such that θ1−θ2−θ3 = −π and below the axis we have θ3 = π, θ1 = θ2 = 2π

and therefore also θ1− θ2− θ3 = −π. This means no cut is required on this

segment.

• z ∈ (−3, 1): On this line segment we have above the axis θ2 = 0, θ1 =

θ3 = π, such that θ1 − θ2 − θ3 = 0 and below the axis we have θ2 = 2π,

θ1 = θ3 = π and therefore also θ1−θ2−θ3 = −2π. This means the function

is discontinuous and we need a branch cut to make it analytic.

• z ∈ (−∞, 3): On this part of the axis there is no problem as θ1, θ2 and θ3
are all continuous when crossing the axis.

Overall we only need therefore branch cut at the line segment (−3, 1) and (3,∞)

in order to make the function g1(z) single valued and analytic. 6

— 3 —
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(ii) First express the arcsinh in terms of ln

w = sinh z =
1

2
(ez − e−z) =

1

2
(y − y−1) with y = ez.

Therefore

y2 − 2wy − 1 = 0

which is solved by

y1/2 = w±
√
w2 + 1.

Therefore taking the positive square root

arcsinh(z) = ln
(
z +

√
z2 + 1

)

The principal branch of ln has the negative real axis, i.e. (−∞, 0) ≡ R
−, as

branch cut. Thus we need to guarantee that

a) z2 + 1 /∈ R− and b) z + exp

[
1

2
ln(z2 + 1)

]
/∈ R−

a) Suppose that z2 + 1 ∈ R

⇒ (z2 + 1)∗ = z2 + 1 ⇔ (z∗)2 = z2 ⇒ z = ±z∗ ⇒ z = x, z = iy

for z = x: x2 + 1 ∈ R+ ⇒ no restrictions arises from this possibility.

for z = iy: −y2+ 1 ∈ R− for |y| > 1 ⇒ we need to cut out {(−i∞,−i), (i, i∞)}.
b) Assume that

z + exp

[
1

2
ln(z2 + 1)

]
= r ∈ R−

Therefore

(1 + z2) = (r − z)2 ⇔ 1 + z2 = r2 + z2 − 2rz ⇒ z =
r2 − 1

2r
.

This means z ∈ R− only for r ∈ R− and no further restriction results from this

possibility.

The principal branch cuts of arcsinh(z) are therefore at (−i∞,−i) and (i, i∞).
∑

= 13

∑
= 253. (i) Definition: The function f(x) is said to have exponential growth α if there

exists a constant µ such that

|f(x)| ≤ µeαx for x > 0, with α, µ ∈ R.

2

Definition: The Laplace transform Lu(x) of a piecewise smooth function f(x)

with exponential growth α is defined as

Lf(x) :=

∫
∞

0
f(t)e−txdt for x > α.

3
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(ii) Compute

L−1v(x) =
1

2πi

γ+i∞∫

γ−i∞

5

t2 − 25
etxdt.

Parameterize z = ε+ reiθ and compute

1

2πi

∮

Γ

5

z2 − 25
ezxdz =

2πi

2πi
Res
z0=±ω

5

(z − 5)(z + 5)
ezx =

1

2
e5x − 1

2
e−5x = sinh 5x

In order to show that 8

γ+i∞∫

γ−i∞

t

t2 − 25
etxdt =

∮

Γ

z

z2 − 25
ezxdz

we have to guarantee that the integral over, say Γ, parameterized by reiθ for θ

from π/2 to 3π/2 vanishes as r→∞. Compute

∣∣∣∣∣∣

∮

γ

5

z2 − 25
ezxdz

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
5eεx

3π/2∫

π/2

reiθ

(ε+ reiθ)2 − 25
ere

iθxdθ

∣∣∣∣∣∣∣

With
∣∣∣reiθ

∣∣∣ = r
∣∣∣ere

iθx
∣∣∣ = erx cos θ ≤ 1 for

π

2
≤ θ ≤ 3

2
π

∣∣∣(ε + reiθ)2 − 25
∣∣∣ > r2 − 25

follows
∣∣∣∣∣∣∣
eεx

3π/2∫

π/2

reiθ

(ε + reiθ)2 − 25
ere

iθxdθ

∣∣∣∣∣∣∣
< eεx

r

r2 − 25
→ 0 for r→∞.

⇒ L−1v(x) = sinh 5x

12
∑

= 254. (i) The convolution of two functions u(x) and v(x) is defined as

7

u ∗ v(x) =

∞∫

−∞

u(s)v(x− s)ds.

We have

w(s)v(x− s) =

{
1 for |x− s| < µ and |s| < µ

0 otherwise

— 5 —
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This means

x− s < µ ⇒ x < µ+ s < 2µ

−µ < x− s ⇒ s− µ < x ⇒−2µ < x

}

⇒ |x| < 2µ

When 0 < x < 2µ : x− s < µ⇒ x− µ < s < µ⇒
∫ µ
x−µ ds = 2µ− x.

When −2µ < x < 0 : −µ < x− s⇒−µ < s < x+ µ⇒
∫ x+µ
−µ ds = 2µ+ x.

Therefore

w ∗ v(x) =






0 for x < −2µ

2µ+ x for − 2µ < x < 0

2µ− x for 0 < x < 2µ

0 for x > 2µ

.

(ii) We verify in general 10

F(u ⋆ v)(x) =

∫
∞

−∞

(u ⋆ v)(t)e−itxdt =

∫
∞

−∞

dt

∫
∞

−∞

ds u(s)v(t− s)e−itx

=

∫
∞

−∞

ds u(s)

(∫
∞

−∞

dt v(t− s)e−itxeisx
)
e−isx

=

∫
∞

−∞

ds u(s)e−isx
(∫

∞

−∞

dt v(t)e−itx
)

= F(u)F(v).

First compute F(w)F(v):

F(w) =

∫ µ

−µ
dt e−itx =

i

x
e−itx

∣∣∣∣
µ

−µ

=
i

x

(
e−ixµ − eixµ

)
=

2

x
sin(µx).

Therefore

F(w)F(v) =

[
2

x
sin(µx)

]2
=

4

x2
sin2(µx).

On the other hand

F(w ⋆ v)(x) =

0∫

−2µ

(t + 2µ)e−itxdt +

2µ∫

0

(2µ− t)e−itxdt

= 2µ

2µ∫

−2µ

e−itxdt +

0∫

−2µ

te−itxdt−
2µ∫

0

te−itxdt

=
4

x
µ sin(2µx) +

(
1

x2
+
it

x

)
e−itx

∣∣∣∣
0

−2µ

−
(

1

x2
+
it

x

)
e−itx

∣∣∣∣
0

−2µ

=
4µ

x
sin(2µx) +

2ie2ixµµ

x
− e2ixµ

x2
+

1

x2
− 2ie−2ixµµ

x
− e−2ixµ

x2
+

1

x2

=
4µ

x
sin(2µx) +

2ie2ixµµ

x
− e2ixµ

x2
+

1

x2
− 2ie−2ixµµ

x
− e−2ixµ

x2
+

1

x2

=
4µ

x
sin(2µx)− 2 cos(2xµ)

x2
− 4µ sin(2xµ)

x
+

2

x2

= −2 cos2(xµ)

x2
+

2 sin2(xµ)

x2
+

2

x2
=

4 sin2(xµ)

x2

— 6 —
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Hence F(w)F(v) = F(w)F(v).

(iii) First we compute the Hermite polynomial H3(x) 8

H3(x) = (−1)3ex
2 d3

dx3

(
e−x

2
)

= −ex2 d
2

dx2

[
−2xe−x

2
]

= ex
2 d

dx

[
2e−x

2 − 4x2e−x
2
]

= ex
2
[
−12xe−x

2

+ 8x3e−x
2
]

= 8x3 − 12x,

such that

u(x) =
(
8x3 − 12x

)
e−x

2

.

Next we define v(x) = e−x
2

. Then v′(x) = −2xe−x
2

, v′′(x) = (4x2 − 2)e−x
2

and

v′′′(x) = (12x− 8x3)e−x
2

. Therefore

u(x) =
(
8x3 − 12x

)
e−x

2

= −v′′′(x)

Therefore

Fu(x) = −Fv′′′(x) = −ixFv′′(x) = x2Fv′(x) = ix3Fv(x)

= i
√
πx3e−x

2/4. ∑
= 25

5. (i) Acting with the Laplace operator L on 11

mẍ(t) + λẋ(t) + κx(t) = F (t)

gives

mLẍ(t) + λLẋ(t) + κLx(t) = LF (t). (1)

Applying Lu(n)(x) = xnLu(x)−∑n−1
k=0 x

n−k−1u(k)(0) for n = 1, n = 2 we find

Lẍ(t) = t2Lx(t)− tx(0)− ẋ(0) ⇒ Lẍ(t) = t2Lx(t)

Lẋ(t) = tLx(t)− x(0) ⇒ Lẋ(t) = tLx(t),

We used the initial conditions x(0) = ẋ(0) = 0. Therefore we can rewrite (1) as

mt2Lx(t) + λtLx(t) + κLx(t) = LF (t),

which we can solve for Lx(t)

Lx(t) =
LF (t)

mt2 + λt + κ
=

LF (t)

m(t2 + λ/mt + κ/m)
=
LF (t)

m

1

(t + µ)2 + ω2
. (2)

— 7 —
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Here we completed the square and abbreviated ω2 = κ/m − µ2, µ = λ/2m.

Using the hint

Lu(x) =
λ

(x− µ)2 + λ2
for u(x) = eµx sinλx.

Translating this to our notation here gives

Lv(t) =
ω

(t + µ)2 + ω2
for v(t) = e−µt sinωt. (3)

This means we can rewrite (2) as

Lx(t) =
1

mω
LF (t)Lv(t) =

1

mω
L(F∗v)(t), (4)

where we used L(u⋆v)(x) = (Lu)(x)(Lv)(x) in the last equality. Acting now with

L−1 on (4) yields the final asnwer for x(t) in form of an integral representation

x(t) =
1

mω
F∗v(t) =

1

mω

∫
∞

0
ds F (t− s)e−µs sinωs. (5)

(ii) When we specify F (t) = pδ(t) the solution (5) becomes 2

x(t) =
p

mω

∫
∞

0
ds δ(t− s)e−µs sinωs =

p

mω
e−µt sinωt.

(iii) Next we specify F (t) = F0 sin(ω̂t). We could try to evaluate 12

x(t) =
F0
mω

∫
∞

0
ds sin[ω̂(t− s)]e−µs sinωs,

but it is more convenient to go back to equation (2). With the hint we have

that

LF (t) = F0
ω̂

t2 + ω̂2
,

such that we obtain from equation (2)

x(t) =
F0ω̂

m
L−1

(
1

t2 + ω̂2
1

(t + µ)2 + ω2

)
=
F0ω̂

mχ
L−1

(
αt + β

t2 + ω̂2
+

γt + δ

(t + µ)2 + ω2

)
,

where

χ = ω̂4 + 2ω̂2(µ2 − ω2) + (µ2 + ω2)2 = ω̂4 + 2ω̂2(
λ2

2m2
− κ

m
) +

κ2

m2

α = −2µ, β = ω2 − ω̂2 + µ2, γ = 2µ, δ = ω̂2 − ω2 + 3µ2.

We may now use

L−1
(

ω

(t− µ)2 + ω2

)
= eµt sinωt and L−1

(
t− µ

(t− µ)2 + ω2

)
= e−µt cosωt

— 8 —
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to derive

x(t) =
F0ω̂

mχ

(
α cos ω̂t +

β

ω̂
sin ω̂t + γeµt cosωt +

δ + µγ

ω
eµt sinωt

)
.

Up to here will be fine. We can carry on and simplify the solution further. De-

pending on the sign of λ, the last two terms will lead to exponentially increasing

or decreasing functions. Discarding this solution a common trick for the above

type of expressions is to introduce a further parameter ϕ as

tanϕ = − ω̂α
β

=
λω̂

k −mω̂2

such that

x(t) =
F0ω̂

mχ
sin(ω̂t− ϕ).

∑
= 25

— 9 —


