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Each question carries 25 marks.

SECTION A

1) (i) (3 marks) State the Schwarz-Christoffel theorem which characterises
the mapping of the upper half plane Im z > 0 into an n-sided polygon.
How is the theorem modified when the upper half plane is mapped
onto an unbounded region?

(ii) (10 marks) Determine the Schwarz-Christoffel transformation f :
z �→ w, which maps the upper half plane onto the region as indi-
cated in the figure:
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Hint: At first map x1 = 0, x2 = 1 onto w1 = −α, w2 = 2i and then
let α→ 0.

(iii) (6 marks) Construct a linear fractional transformation that maps the
interior of the unit circle to the exterior of the circle with radius 2
centred at (2,−1).

(iv) (6 marks) Prove the following theorem: A harmonic function ψ(x, y)
transforms into a harmonic function ψ(u, v) when changing variables

as z = x+ iy = f(w) = f(u+ iv) with f being an analytic function.

How is this theorem used in potential theory?
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2) (i) (3 marks) Define the branch, the branch cut and the branch point of
a multi-valued function.

(ii) (14 marks) Find the largest domain on which the function

g(z) = ln

�
z2 − 25
z − 8

�

is single valued and analytic. Provide two alternative constructions:
a) Take the principal branch cut for the logarithmic function and b)
take the branch cut for the logarithmic function to be at R+.

(iii) (8 marks) Compute specific values of

(a) ln
�√
12 + 2i

�
, (b) arccos [ln(−1)] , (c) arctanh (−π) .

In (a) and (b) compute the principal values and in (c) use the nor-
malization arctanh (0) = iπ to select a branch. Provide explicit ar-
guments for any choice of signs in your calculations.

3) (i) (2 marks) Explain in which sense a Laplace transform may by ob-
tained from a Fourier transform by a variable transformation.

(ii) (4 marks) Explain what is meant by exponential growth of a function
and provide the explicit argument of how this is used to ensure the
existence of a Laplace transform.

(iii) (10 marks) Employ the Laplace transforms to solve the second order
differential equation

y′′(x) + 2y′(x) + y(x) = x

with intial conditions y(0) = −1 and y′(0) = 0.

(iv) (9 marks) Employ the convolution theorem to solve the integral equa-
tion

φ(t) = 2 cos t−
� t

0

(t− s)φ(s)ds.

You may use the following table in any part of this question:

u(x) Lu(x)
1 1

x

x 1
x2

cosx x
1+x2

sinx 1
1+x2

x cosx x2−1
(1+x2)2

x sinx 2x
(1+x2)2

exp(−x) 1
1+x

v′(x) xLv(x)− v(0)
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SECTION B

4) (a) Consider the nonhomogeneous boundary value problem

L[y] ≡ d

dx

�
1

2x2
dy

dx

�
+
1

x4
y = −f(x), 1 < x < 2,

y′(1) = 0, y(2)− y′(2) = 0.

(i) (4 marks) Show that y1(x) = x and y2(x) = x2 form a funda-
mental set of solutions to the associated homogeneous equation
L[y] = 0.

(ii) (11 marks) State the properties of the Green’s function for a self-
adjoint equation with homogeneous boundary conditions. Use
these properties to derive the Green’s function for the problem
under consideration. (You may also use the symmetry property.)

(iii) (4 marks) Use the Green’s function to express the solution of
the boundary value problem as a sum of two integrals. Hence
evaluate the solution when f(x) = 1

x2
.

(b) (6 marks) State Picard’s existence and uniqueness theorem for the
initial value problem

dy

dx
= f(x, y), y(x0) = η0.

Use the theorem to prove that the initial value problem

y
dy

dx
= cos(xy), y(0) = 10,

has a unique solution on the interval 0 ≤ x ≤ 25.
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5) (a) Consider the partial differential equation

uxx + 5uxy + 4uyy = 18y − 18x.

(i) (4 marks) Classify the equation as hyperbolic, parabolic or ellip-
tic. Find the equations of its characteristics.

(ii) (6 marks) By transforming to the coordinates ξ = 4x − y and
η = x− y, show that the canonical form of the equation is

uξη = 2η,

where u(ξ, η) = u(x(ξ, η), y(ξ, η)).

(iii) (3 marks) Hence find the general solution u(x, y) of the equation.

(b) Consider the system of differential equations

y′1(x) = 5y1(x)− 4y2(x)
y′2(x) = 3y1(x)− 3y2(x)

(i) (1 mark) Write the system in the matrix form y′(x) = Ay(x).

(ii) (5 marks) Determine the eigenvalues and eigenvectors of the ma-
trix A.

(iii) (1 mark) Hence obtain the general solution of the system.

(iv) (5 marks) Write down a fundamental matrix for the system and
determine the corresponding transition matrix.
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6) (a) (11 marks) Find the eigenvalues and eigenfunctions of the boundary-
value problem

d2y

dx2
+ λy = 0, 0 < x < 1,

y′(0) = 0, y(1) = 0.

(b) Consider the nonhomogeneous initial-boundary-value problem

ut − uxx = h(x, t), 0 < x < 1, t > 0,

ux(0, t) = 0, u(1, t) = 0, t > 0,

u(x, 0) = f(x), 0 < x < 1.

(i) (4 marks) By using the method of separation of the variables on
the associated homogeneous problem, show that the eigenfunc-
tions determined in (a) give a basis for an eigenfunction expan-
sion of the solution of the nonhomogeneous problem.

(ii) (5 marks) Show that a formal solution of the nonhomogeneous
problem is given by

u(x, t) =
∞�

n=1

bn(t)Xn(t),

where the Xn(x) are the eigenfunctions obtained in (a), the bn(t)
satisfy

b′n(t) +

�
n− 1

2

�2
π2bn(t) = γn(t), n = 1, 2, . . . ,

bn(0) = βn, n = 1, 2, . . . ,

and γn(t) and βn are the coefficients of Xn(x) in the expansions
of h(x, t) and f(x) respectively.

(iii) (5 marks) By solving the differential equation for bn(t), show that

bn(t) = e−λntβn +

� t

0

e−λn(t−τ)γn(τ ) dτ,

where λn =
	
n− 1

2


2
π2.

Internal Examiners: Professor J. Chuang
Professor A. Fring

External Examiners: Professor J. Rickard
Professor J. Lamb
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Each question carries 25 marks.

1) (i) (3 marks) (Schwarz-Christoffel theorem) Given an n-sided polygon
with vertices wi and exterior angles θi = µiπ for 1 ≤ i ≤ n. Then
there exist always n real numbers xi for 1 ≤ i ≤ n together with a
complex constant c ∈ C and an analytic function f : z �→ w whose
derivative is given by

f ′(z) = c
n−1�

i=1

(z − xi)
−µi c ∈ C,−1 < µi < 1,

which maps the upper half plane one-to-one onto the interior of the
polygon. The points are mapped as wi = f(xi) for 1 ≤ i ≤ n− 1 and
wn = limx→±∞ f(x).

The expression for f ′(z) remains the same when the target space is an
unbounded region, but in that case we have θ1+θ2+θ3+. . .+θn−1 ≤ π
and θn > π.

(ii) (10 marks) Initially we have

f ′(z) = c(z + α)−φ/π(z − 1)(π/2+φ)/π

with φ being the angle as indicated in the figure. Letting α → 0 the
angle becomes φ = π/2, such that

f ′(z) = c(z)−1/2(z − 1).

Integrating we obtain

f(z) = c

�
(
√

z − z−1/2)dz

= c
2

3
z3/2 − 2c

√
z + c̃ = c

2

3

√
z(z − 3) + c̃.

We also have

f(x1) = w1 ⇔ f(0) = 0 ⇔ c̃ = 0,

f(x2) = w2 ⇔ f(1) = 2i ⇔ c
2

3

√
1(1− 3) = 2i,

which fixes c = −3i/2 and hence

f(z) = −i
√

z(z − 3).

2 Turn over . . .



(iii) (6 marks) One can select three distinct points on each circle, i.e. z1,
z2, z3 and w1, w2, w3 and subsequently solve

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
,

for w. It is easier to decompose the linear fractional transformation.
We know that the inverse map fI(z) maps the interior of the unit
circle to its exterior, then we use a scaling ("rotation") f 2R(z) to
increase the radius from 1 to 2 and finally we translate the centre
from the origin to (2,−1) by a translation map f 2−iT (z). Therefore

f(z) = f 2−iT ◦ f 2R ◦ fI(z) = f 2−iT ◦ f 2R

�
1

z

�
= f 2−iT

�
2

z

�
=

2

z
+ 2− i

=
(2− i)z + 2

z
.

This is clearly a linear fractional transformation, i.e. of the form

w = T (z) =
az + b

cz + d
for ad− bc 	= 0; a, b, c, d ∈ C.

(iv) (6 marks)

Proof : Take ψ(x, y) to be a harmonic function and z = f(w) to be
an analytic function.
⇒ ∃ a conjugate function ψ̃(x, y), i.e. a harmonic function such
that ψ(x, y), ψ̃(x, y) satisfy the Cauchy-Riemann equations.
⇒ The newly defined function φ(x, y) = ψ(x, y) + iψ̃(x, y) is an
analytic function of z, which follows by the corollary: The real
and imaginary parts of an analytic function are harmonic func-
tions. Conversely, if the two functions u(x, y) and v(x, y) are
harmonic functions then f(z) = u(x, y) + iv(x, y) is an analytic
function.
⇒ φ(z) = φ(f(w)) is an analytic function of w, since an analytic
function of an analytic function is an analytic function.
⇒ ψ is a harmonic function of u, v.�

In potential theory this guarantees that in a boundary value prob-
lem the Laplace equation is preserved, such that we can map
complicated domains to easier ones.

2) (i) (3 marks)

Definition: A branch F(z) of a multi-valued function f(z) is any
single valued function, which is analytic in some domain D ⊂ C,
where F(z 0) =f(z0) for all z0 ∈ D.
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Definition: A branch cut is a curve in the complex plane across
which an analytic multivalued function is discontinuous.

Definition: A point which is shared by all branches of the function
is called a branch point.

(ii) (14 marks) The function g(z) has three branch points at z = 8 and
at z = ±5. For the arguments of the logarithm we can write

z ± 5 = |z ± 5| eiθ2/1 and z − 8 = |z − 8| eiθ3

such that

g(z) = ln

�
z2 − 25

z − 8

�
= ln(z + 5) + ln(z − 5)− ln(z − 8)

= ln

����
z2 − 25

z − 8

����+ i(θ1 + θ2 − θ3)

We have now various choices for the restriction on θ1, θ2 and θ3 :

a) Assume the principal values for the logarithms: [7]

−π < θ1, θ2, θ3 ≤ π

Let us now consider the different regions on the real axis:

• z ∈ (8,∞): On this part of the axis there is no problem as θ1, θ2 and
θ3 are all continuous when crossing the axis.

• z ∈ (5, 8): On this line segment θ1 and θ2 are continuous, but θ3
jumps and therefore we require a cut.

• z ∈ (−5, 5): When crossing this part of the axis both θ2 and θ3 are
discontinuous. However, the relevant quantity, which is the difference
θ1+θ2−θ3 is continuous. Above the axis we have θ1 = 0, θ2 = θ3 = π,
such that θ1 + θ2 − θ3 = 0 and below the axis we have θ1 = 0,
θ2 = θ3 = −π and therefore also θ1+ θ2− θ3 = 0. This means no cut
is required on this segment.

• z ∈ (−∞,−5): On this line segment we have above the axis θ1 =
θ2 = θ3 = π such that θ1 + θ2 − θ3 = π and below the axis we
have θ1 = θ2 = θ3 = −π such that θ1 + θ2 − θ3 = −π. This means
the function is discontinuous and we need a branch cut to make it
analytic.

Overall we only need therefore branch cuts at the line segment (−∞,−5)
and (5, 8) in order to make the function g(z) single valued and analytic.

ii) Next we assume the cuts for the logarithms to be at: [7]

0 < θ1, θ2, θ3 ≤ 2π

Again we consider the different regions on the real axis:
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• z ∈ (8,∞): On this line segment we have above the axis θ1 = θ2 =
θ3 = 0 such that θ1 + θ2 − θ3 = 0 and below the axis we have
θ1 = θ2 = θ3 = 2π such that θ1 + θ2 − θ3 = 2π. This means
the function is discontinuous and we need a branch cut to make it
analytic.

• z ∈ (5, 8): On this line segment we have above the axis θ3 = π,
θ1 = θ2 = 0, such that θ1 + θ2 − θ3 = −π and below the axis we
have θ3 = π, θ1 = θ2 = 2π and therefore also θ1 + θ2 − θ3 = 3π.
This means the function is discontinuous and we need a branch cut
to make it analytic.

• z ∈ (−5, 5): On this line segment we have above the axis θ1 = 0,
θ2 = θ3 = π, such that θ1 + θ2 − θ3 = 0 and below the axis we have
θ1 = 2π, θ2 = θ3 = π and therefore we have θ1 + θ2 − θ3 = 2π.
This means the function is discontinuous and we need a branch cut
to make it analytic.

• z ∈ (−∞,−5): On this part of the axis there is no problem as θ1, θ2
and θ3 are all continuous when crossing the axis.

Overall we need therefore a branch cut at the line segment (−5,∞) in
order to make the function g(z) single valued and analytic.

(iii) (8 marks) We compute
[2]

(a)

ln
�
2
√
3 + 2i

�
= ln

�
4 cos

π

6
+ 4i sin

π

6

�

= ln (4) + ln
�
eiπ/6+2πin

	
with n ∈ Z

= 2 ln 2 + i
π

6
+ 2πin

For the principal value of ln(z) we require −π < arg z ≤ π, such
that n = 0.

(b) Since arccos (z) = w we have [3]

z = cosw =
1

2

�
eiw + e−iw

	
⇒ e2iw − 2zeiw + 1 = 0.

Therefore
eiw+2πin = z ±

√
z2 − 1

such that
arccos (z) = −i ln

�
z +

√
z2 − 1

�
.
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We take the principal values and note that ±
√

z2 − 1 =
√

z2 − 1
with z2−1 = eiw

′+2πin. Now we compute arccos [ln(−1)]. Taking
the principal value ln(−1) = iπ

arccos [ln(−1)] = −i ln
�
iπ +

√
−π2 − 1

�

= −i ln
�
iπ + i

√
π2 + 1

�

= −i ln

�

π +
√
1 + π2

�
eiπ/2

�

=
π

2
− i ln

�
π +

√
1 + π2

�
.

(c) Since arctanh (z) = w we have [3]

z = tanhw =
ew − e−w

ew + e−w
⇒ ze2w + z = e2w − 1.

Therefore

e2w+2πin =
1 + z

1− z
,

such that

arctanh (z) =
1

2
ln

�
1 + z

1− z

�
+ iπn

=
1

2
ln

����
1 + z

1− z

����+
i

2
arg

�
1 + z

1− z

�
+ iπn.

This means arctanh (0) = iπn and we have to select n = 1. We
use this to evaluate

arctanh (−π) =
1

2
ln

����
1− π

1 + π

����+
i

2
arg

�
1− π

1 + π

�
+ iπ

=
1

2
ln

����
1− π

1 + π

����+
3

2
iπ.

3) (i) (2 marks) The Fourier transform Fu(x)=û(x) of a piecewise smooth
and absolutely integrable function u(x) on the real line is defined as

Fu(x) := û(x) =

�
∞

−∞

u(t)e−itxdt.

The Laplace transform of a function u(x) is essentially the Fourier
transform of this function whose argument is rotated by −π/2

Fu(f−π/2R x) = Fu(e−iπ/2x) = Fu(−ix) =

�
∞

−∞

u(t)e−xtdt.
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Since in comparison with the Fourier transform we have now traded
the oscillatory function e−ixt for e−xt we require a very strong decay
for u(t) when t → −∞. To avoid this one usually assumes that
u(x) = 0 for −∞ < x < 0, such that the Laplace transform Lu(x) of
a piecewise smooth function u(x) with exponential growth α is defined
as

Lu(x) :=

�
∞

0

u(t)e−txdt for x > α.

(ii) (4 marks) A function u(x) is said to have exponential growth α if
there exists a constant µ such that

|u(x)| ≤ µeαx for x > 0, with α, µ ∈ R.

The existence of the integral is guaranteed by the following argument

Lu(x) ≤
�
∞

0

|u(t)| e−txdt

≤ µ

�
∞

0

eαxe−txdt

= µ

�
∞

0

e(α−x)tdt <∞ for x > α.

(iii) (10 marks) Acting with L on the differential equation gives

Ly′′(x) + 2Ly′(x) + Ly(x) = Lx.

Using the last identity from the table and the expression for Lx gives

xLy′(x)− y′(0) + 2xLy(x)− 2y(0) + Ly(x) =
1

x2

which becomes

x2Ly(x)− xy(0)− y′(0) + 2xLy(x)− 2y(0) + Ly(x) =
1

x2
.

Using the intial conditions and solving for Ly(x) yields

Ly(x) =
1

(1 + x)2

�
1

x2
− 2− x

�
=

1

x2
− 2

x
+

1

1 + x
.

Acting now with the inverse Laplace transform on this equation and
using the Laplace transforms provided in the table we obtain

y(x) = x− 2 + exp(−x).
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(iv) (9 marks) The convolution of two functions u(x) and v(x) is defined
as

u ⋆ v(x) =

�
∞

−∞

u(s)v(x− s)ds.

When u(x) = v(x) = 0 for x < 0 this becomes

u ⋆ v(x) =

� x

0

u(t)v(x− t)dt.

The convolution theorem states: The Laplace transform of the con-
volution of the two functions u and v, i.e. u⋆ v(x) equals the product
of the Laplace transforms these functions

L(u ⋆ v)(x) = (Lu)(x)(Lv)(x).

Acting now with L on the integral equation

φ(t) = 2 cos t−
� t

0

(t− s)φ(s)ds

gives
Lφ(t) = 2Lv(t)− Lu(t)Lφ(t).

where v(t) = cos t and u(t) = t. Solving this for Lφ(t) gives

Lφ(t) =
2Lv(t)

1 + Lu(t)
.

Using the Laplace transforms provided in the table we obtain

Lφ(t) =
2t3

(1 + t2)2
=

2t

1 + t2
− 2t

(1 + t2)2
.

Taking the inverse Laplace tranform L−1 of this equation yields to-
gether with the table

φ(t) = 2 cos t− t sin t.
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4) (a) (i) [4] We have L[x] = −1/x3+1/x3 = 0 and L[x2] = −1/x2+1/x2 =
0. The Wronskian

W (y1, y2)(x) =

����
x x2

1 2x

���� = x2 	= 0

for 1 < x < 2. So y1 and y2 form a fundamental set of solutions.

(ii) [11] The Green’s function for the self-adjoint equation (py′)′ +
qy = −f has the following properties:

(1) G(x, t) satisfies the homogeneous DE with respect to x (x 	=
t)

(2) G(x, t) satisfies the boundary conditions

(3) G(x, t) is continuous at x = t

(4) ∂G
∂x

is discontinuous at x = t with ∂G
∂x
|x=t+0− ∂G

∂x
|x=t−0 = − 1

p(t)

The equation as given is already in self-adjoint form, with p(x) =
1/2x2. Using (1) we have

G(x, t) =

�
A(t)x+ B(t)x2, 1 ≤ x ≤ t,

C(t)x+ D(t)x2, t ≤ x ≤ 2.

Then by (2) Gx(1, t) = A + 2B = 0 =⇒ A = −2B, and
G(2, t)−Gx(2, t) = C = 0. Thus

G(x, t) =

�
B(t)x(x− 2), 1 ≤ x ≤ t,

D(t)x2, t ≤ x ≤ 2.

Then by the symmetry property

G(x, t) =

�
Kx(x− 2)t2, 1 ≤ x ≤ t,

Kx2t(t− 2), t ≤ x ≤ 2,

where K is some constant. Then (3) is already satisfied, and (4)
gives K(2x)t(t− 2)|x=t −K(2x− 2)t2|x=t = −(1/2t2)−1 = −2t2,
which implies K = 1. So

G(x, t) =

�
x(x− 2)t2, 1 ≤ x ≤ t,

x2t(t− 2), t ≤ x ≤ 2,

(iii) [4] We have

y(x) =

� 2

1

G(x, t)f(t)dt =

� x

1

x2t(t−2)f(t)dt+
� 2

x

x(x−2)t2f(t)dt.
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When f(x) = 1
x2
,

y(x) = x2
� x

1

(1− 2

t
)dt+ x(x− 2)

� 2

x

dt

= x2(x− 2 lnx− 1) + x(x− 2)(2− x)

= x(3x− 4− 2x ln x).

(b) [6] Picard’s Theorem: If f(x, y) and fy are continuous in the rectangle
R = {(x, y) : x0 ≤ x ≤ x+ a, |y − η0| ≤ b} then the initial-value
problem has a unique solution in the interval x0 ≤ x ≤ x0+α, where
α = min (a, b/M) and M = max(x,y)∈R |f(x, y)|.
For the particular IVP in question,

f(x, y) = cos(xy)/y, fy =
− sin(xy)xy − cos(xy)

y2
.

So f and fy are continuous for all x and y 	= 0, and therefore f and fy
are continuous in the rectangleR = {(x, y) : 0 ≤ x ≤ a, |y − 10| ≤ b}
for any a > 0 and 10 > b > 0. Now M = maxR |f(x, y)| =
f(0, 10− b) = 1

10−b
, since |cos(xy)| ≤ 1 and |y| = y ≥ 10− b. Hence

α = min {a, b(10− b)}. Taking a = 25 and b = 5 we have α = 25,
and so there is a unique solution for 0 < x < 25.

5) (a) (i) [4] Since b2 − 4ac = 52 − 4(1)(4) = 9 > 0, the equation is hyper-
bolic. The characteristics are solutions of the differential equa-
tion �

dy

dx

�2
− 5

dy

dx
+ 4 = 0.

So dy/dx = 4, 1 giving characteristics y = 4x+c1 and y = x+c2.

(ii) [6] The characteristic coordinates are thus ξ = −c1 = 4x−y and
η = −c2 = x− y. To transform to canonical form, we calculate

ux = 4uξ + uη

uy = −uξ − uη

uxx = (4∂ξ + ∂η)(4uξ + uη) = 16uξξ + 8uξη + uηη

uxy = (4∂ξ + ∂η)(−uξ − uη) = −4uξξ − 5uξη − uηη

uyy = (−∂ξ − ∂η)(−uξ − uη) = uξξ + 2uξη + uηη

So the PDE transforms to

(16uξξ+8uξη+uηη)+5(−4uξξ−5uξη−uηη)+4(uξξ+2uξη+uηη) = −18η.

So −9uξη = −18η =⇒ uξη = 2η.
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(iii) [3] Integrating the DE with respect to η we have uξ = η2+ f(ξ),
and then with respect to ξ we obtain u = ξη2+F (ξ) +G(η). So
the general solution is

u(x, y) = (4x− y)(x− y)2 + F (4x− y) + G(x− y),

where F and G are arbitrary.

(b) (i) [1] In this form

y =

�
y1(x)
y2(x)

�
and A =

�
5 −4
3 −3

�
.

(ii) [5] The characteristic polynomial is (5− λ)(−3− λ)− (−12) =
λ2 − 2λ − 3 = (λ + 1)(λ − 3). So the eigenvalues are −1 and 3

and the corresponding eigenvectors are

�
2
3

�
and

�
2
1

�
.

(iii) [1] Thus the general solution is

y(x) = Ae−x
�
2
3

�
+ Be3x

�
2
1

�
.

(iv) [5] A fundamental matrix is

M(x) =

�
2e−x 2e3x

3e−x e3x

�
.

Then

[M(x)]−1 =
1

−4e2x
�

e3x −2e3x
−3e−x 2e−x

�
=

1

4

�
−ex 2ex

3e−3x −2e−3x
�

and the transition matrix is

M(x, x0) = M(x)[M(x0)]
−1 =

1

4

�
2e−x 2e3x

3e−x e3x

��
−ex0 2ex0

3e−3x0 −2e−3x0
�

=
1

4

�
−2e−(x−x0) + 6e3(x−x0) 4e−(x−x0) − 4e3(x−x0)

−3e−(x−x0) + 3e3(x−x0) 6e−(x−x0) − 2e3(x−x0)

�
.

6) (a) [11] This is a S-L problem with p(x) = 1, q(x) = 0 and r(x) = 1, so
the eigenvalues are real.

Suppose λ < 0, and put λ = −µ2, where µ is positive, real. Then
the DE becomes y′′ − µ2y = 0, which has general solution y(x) =
A coshµx + B sinhµx. The first BC implies B = 0, and then the
second that y(1) = A coshµ = 0 =⇒ A = 0, since coshµ 	= 0. So
y(x) = 0 and there are no nontrival solutions in this case.
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Suppose λ = 0. Then the DE is y′′(x) = 0 which has general solution
y(x) = Ax + B. The first BC gives A = 0 and then the second that
B = 0. So again thre are no nontrivial solutions.

Suppose λ > 0, and let λ = µ2, where µ is positive, real. Then the
DE is y′′ + µ2y = 0, which has GS y(x) = A cosµx + B sinµx. The
first BC gives B = 0, and the second y(1) = A cosµ = 0. So either
A = 0, which gives the trivial solution, or cosµ = 0, which implies
that µ =

�
n− 1

2

	
π, n = 1, 2, . . ..

So the e-values are λn =
�
n− 1

2

	2
π2 and the e-functions are yn(x) =

cos
�
n− 1

2

	
πx, n = 1, 2, . . . .

(b) i. [4] The associated problem is

ut − uxx, u(0, y) = 0, ux(0, t) = 0.

Let u(x, t) = X(x)T (t). Then the DE implies XT ′ −X ′′T = 0
which implies that T ′

T
= X′′

X
= −λ. The BCs implies ux(0, t) =

X ′(0)T (t) = 0 =⇒ X ′(0) = 0 and u(1, t) = X(1)T (t) =
0 =⇒ X(1) = 0. So a basis is given by the eigenfunctions of
X ′′ + λX = 0, X ′(0) = 0, X(1) = 0.

ii. [5] If u(x, t) =


∞

n=1 bn(t)Xn(x), with Xn(x) = cos
�
n− 1

2

	
πx

then the DE implies


∞

n=1 b
′
n(t)Xn(x)−


bn(t)X

′′
n(x) =


∞

n=1 γn(t)Xn(x).
Equating coefficients of Xn(x), we get b′n(t) + λnbn(t) = γn(t).
The initial conditions imply u(x, 0) =


bn(0)Xn(x) = f(x) =⇒

bn(0) = βn.

iii. [5] Using the integrating factor eλnt gives

d

dt

�
eλntbn(t)

�
= eλntγn(t).

So

eλntbn(t)− bn(0) =

� t

0

eλnτγn(τ ) dτ.

So

bn(t) = eλntbn(0) + e−λnt
� t

0

eλnτγn(τ) dτ

= eλntβn +

� t

0

e−λn(t−τ)γn(τ ) dτ .
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