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Each question carries 25 marks.

SECTION A

1) (i) [4 marks] The linear fractional transformation is defined as

w = T (z) =
az + b

cz + d
for ad− bc �= 0; a, b, c, d ∈ C.

What type of map do we obtain when giving up the restriction ad−
bc �= 0? For which choices of the constants a, b, c, d does this map
reduce to a) a rotation by −π/6 followed by a translation by 1+ i

√
3,

b) a translation by 1 + i
√
3 followed by a rotation by −π/6, and c)

an inversion followed by a scaling of µ ∈ R. Report your answers for
a, b, c, d in the form x+ iy with x, y ∈ R.

(ii) [8 marks] Given the two linear fractional transformations

T1(z) =
z − eiπ/3

e−iπ/3z + 1
and T2(z) =

eiπ2/3z − 1
z + eiπ/2

compute the linear fractional transformation equivalent to the com-
position

T2 ◦ T1(z).
Why is your answer expected to be a linear fractional transformation?
Report your answers for a, b, c, d in the form x + iy with x, y ∈ R.
Decompose your result into a succession of rotations, translations
and inversions.

(iii) [8 marks] Prove that the linear fractional transformation

T (z) = eiθ
z − γ

γ̄z − 1 for θ ∈ R, γ ∈ C,

maps a circle of radius one into a circle of radius one. Fix θ and γ
in such a way that T (z) leaves the unit circle invariant and maps the
line passing through the points z1 = 0, z2 = (1− i

√
3)/2 to the line

passing through w1 = 1 + i
√
3, w2 = −(1 + i

√
3)/2.

(iv) [5 marks] Verify that the function

u(x, y) = ex [x cos(y)− y sin(y)]

is a harmonic function. Compute the conjugate harmonic function for
u(x, y) and subsequently construct an analytic function with u(x, y)
as real part.

2 Turn over . . .



2) (i) [3 marks] Define what is meant by the exponential growth of a func-
tion. Compute the exponential growth for the functions

f1(x) = 5, and f2(x) = e3βx with β ∈ R.

(ii) [3 marks] Provide the explicit argument of how the exponential growth
of a function is used to ensure the existence of a Laplace transform.

(iii) [3 marks] Derive a formula that expresses the Laplace transform of
the fourth derivative of u(x), i.e., Luiv(x), in terms of the Laplace
transform Lu(x).

(iv) [10 marks] Employ Laplace transforms to solve the fourth order dif-
ferential equation

uiv(x)− u(x) = 0

with initial conditions u(0) = 0, u′(0) = 1, u′′(0) = 0 and u′′′(0) = 0.
You may use information from the following table in this question

u(x) Lu(x)
1 1

x

x 1
x2

cosx x
1+x2

sinx 1
1+x2

x cosx x2−1
(1+x2)2

x sinx 2x
(1+x2)2

exp(−x) 1
1+x

sinh x 1
x2−1

(v) [6 marks] Use Fourier transforms to solve the Fredholm integral equa-
tion for φ(x)

e−x
2

= κ

�
∞

−∞

e−(x−s/λ)
2

φ(s/λ)ds,

where λ, κ ∈ R.
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3) (i) [10 marks] Find a conformal map w = f(z) which maps the wedge
region in the z-plane

W = {r, θ : r ∈ R+, 0 ≤ θ ≤ π

8
}

onto the unit disc |w| ≤ 1. Verify that the points z1 = 0, z2 = 1,
z3 = eiπ/8 and z4 = eiπ/16 are mapped correctly. Which theorem
guarantees that such map exits? Is this map unique?

(ii) [3 marks] Define the branch, the branch cut and the branch point of
a multi-valued function.

(iii) [12 marks] Find the largest domain on which the function

g(z) = ln

�
z2 − 36
z − 9

�

is single valued and analytic. Take the principal branch cut for the
logarithmic function.
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SECTION B

4) (a) Consider the initial value problem

dy

dx
= 3x2(y + 1), x ∈ R, y(0) = 0.

(i) [1 mark] Write the differential equation as an integral equation
y(x) = L[x, y(x)].

(ii) [4 marks] Define the Picard iterates by yn+1(x) = L[x, yn(x)].
Taking y0(x) = 0, find y1(x) and y2(x).

(iii) [5 marks] Use Picard’s Theorem to show that the solution of the
problem is unique for 0 ≤ x ≤ 2/3.

(b) Consider the nonhomogeneous boundary value problem

L[y] :=
d

dx

�
1

x3
dy

dx

�
+
3

x5
y = f(x), 1 < x < 2,

y(1) = 0, y(2)− 2y′(2) = 0.
(i) [4 marks] Show that y1(x) = x and y2(x) = x3 form a funda-

mental set of solutions to the associated homogeneous equation
L[y] = 0.

(ii) [9 marks] State the properties of the Green’s function for a self-
adjoint equation with homogeneous boundary conditions. Use
these properties to derive the Green’s function for the problem
under consideration. (You may also use the symmetry property.)

(iii) [2 marks] Use the Green’s function to express the solution of the
boundary value problem as a sum of two integrals.
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5) (a) [6 marks] Find the solution of the partial differential equation

y(x2 + 1)ux + x(y2 + 1)uy = 0, x > 0, y > 0,

that satisfies the condition u(x, 0) = x2.

(b) Consider the partial differential equation

yuxx + (x+ y)uxy + xuyy = −2, x �= y.

(i) [5 marks] Show that the equation is hyperbolic. Find the equa-
tions of its characteristics.

(ii) [10 marks] By transforming to the coordinates z = x2 − y2 and
w = x− y, show that the canonical form of the equation is

w2uzw + wuz = 1.

(iii) [4 marks] Hence find the general solution u(x, y) of the equation.
(Hint: integrate with respect to z first.)
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6) (a) Consider the regular Sturm-Liouville problem

d

dx

�
p(x)

dy

dx

�
+ q(x)y + λr(x)y = 0, α < x < β,

y(α) = 0, 2y(β)− y′(β) = 0,

with p(x) > 0 and r(x) > 0 for α ≤ x ≤ β.

(i) [2 mark] State the orthogonality property satisfied by the eigen-
functions.

(ii) [4 marks] Prove that the eigenvalues are real.

(b) Consider the eigenvalue problem

d2y

dx2
+ λy = 0, 0 < x < 1,

y(0) = 0, 2y(1)− y′(1) = 0.

(i) [5 marks] Show that the problem has one negative eigenvalue.

(ii) [2 mark] Show that 0 is not an eigenvalue of the problem.

(iii) [7 marks] Show that the problem has an infinite number of eigen-
values λn given by µ2n, where µn is a positive solution of the
equation 2 tanµ = µ. Show that the least of these eigenvalues
lies between π2 and 9

4
π2. Show that as n increases, the difference

λn+1 − λn between consecutive eigenvalues tends to 2(n+ 1)π2.

(iv) [2 marks] Write down the eigenfunctions of the problem.

(v) [3 marks] Consider the eigenvalue problem obtained by replacing
the boundary condition 2y(1)−y′(1) by y(1)−2y′(1). How many
negative eigenvalues does it have? Justify your answer.

Internal Examiners: Professor J. Chuang
Professor A. Fring

External Examiners: Professor J. Rickard
Professor J. Lamb
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Each question carries 25 marks.

SECTION A

1) (i) Since we have T ′(z) = (ad−bc)/(d+cz)2 the map becomes a constant. 4
We have

a) f 1+i
√
3

T ◦ f exp(−iπ/6)R (z) = exp(−iπ/6)z + 1 + i
√
3 ,

⇒ a = e−iπ/6 =

√
3

2
− i

2
, b = 1 + i

√
3, c = 0, d = 1,

b) f
exp(−iπ/6)
R ◦ f 1+i

√
3

T (z) = exp(−iπ/6)z + exp(−iπ/6)(1 + i
√
3),

⇒ a = e−iπ/6 =

√
3

2
− i

2
, b = i+

√
3, c = 0, d = 1,

c) fµR ◦ fI(z) =
µ

z
,

⇒ a = 0, b = µ, c = 1, d = 0.

(ii) We compute 6

T2 ◦ T1(z) =
eiπ2/3 z−eiπ/3

e−iπ/3z+1
− 1

z−eiπ/3
e−iπ/3z+1

+ eiπ/2
=
eiπ2/3(z − eiπ/3)− (e−iπ/3z + 1)
z − eiπ/3 + eiπ/2(e−iπ/3z + 1)

=
(eiπ2/3 − e−iπ/3)z

z(1 + eiπ/6) + i− eiπ/3

=
2eiπ2/3z

z(1 + eiπ/6) + i− eiπ/3

=
(i
√
3− 1)z

z(1 +
√
3/2 + i/2)− 1/2 + i(1−

√
3/2)

=

�
4iz

�√
3 + (2− i)

�
z − (1− i)

�√
3− 1

�

�

For c �= 0 we have 2

T (z) = f
a/c
T ◦ f (bc−ad)/cR ◦ fI ◦ fdT ◦ f cR(z),

such that

T2◦T1(z) = f 2e
iπ2/3/(1+eiπ/6)

T ◦f 2eiπ2/3(eiπ/3−i)/(1+eiπ/6)R ◦fI◦f i−e
iπ/3

T ◦f1+eiπ/6R (z)

(iii) We need to show that |T (z)| = 1 for |z| = 1. For |T (z)| = 1 we 8
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obtain

(z − γ)(z̄ − γ̄) = (γ̄z − 1)(γz̄ − 1)
|z|2 − zγ̄ − γz̄ + |γ|2 = |z|2 |γ|2 − zγ̄ − γz̄ + 1

which is an identity for |z| = 1. Parameterizing γ = reiφ we compute

T (0) = eiθγ = rei(θ+φ) = 1 + i
√
3 = 2eiπ/3

=⇒ r = 2, θ = π/3− φ
Next compute

T

�
1− i

√
3

2

�

= T
�
e−iπ/3

�
=
ei(

π
3
−φ)

�
e−

iπ
3 − 2eiφ

�

−1 + 2e−iφ− iπ
3

= −eiπ/3

Solve this for φ, for instance

e−iφ − 2eiπ/3

−1 + 2e−iφ− iπ
3

= −eiπ/3 ⇒ e−iφ = eiπ/3 ⇒ φ = −π/3

Therefore θ = 2π/3 and γ = 2e−iπ/3.

(iv) We compute 5

∂xu(x, y) = ex cos y + ex(x cos y − y sin y)
∂2xu(x, y) = 2ex cos y + ex(x cos y − y sin y)
∂yu(x, y) = −ex(x sin y + sin y + y cos y)
∂2yu(x, y) = ex(−x cos y + y sin y − 2 cos y)

such that ∆u(x, y) = ∂2xu(x, y) + ∂
2
yu(x, y) = 0. This means u(x, y)

is a harmonic functions. The conjugate harmonic function v(x, y) is
obtained from solving the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

∂u

∂x
= ex cos y + ex(x cos y − y sin y) = ∂v

∂y

⇒ v = ex
�
(cos y − y sin y)dy + exx

�
cos ydy

= exy cos y + exf(x) + xex sin y + xexg(x)

∂u

∂y
= −ex(x sin y + sin y + y cos y)

⇒ v = sin y

�
xexdx+ (sin y + y cos y)

�
exdx

= sin y(x− 1)ex + sin yf̃(y) + (ex + g̃(y))(sin y + y cos y)
= xex sin y + sin yf̃(y) + exy cos y + g̃(y)(sin y + y cos y)
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Thus f(x) = g(x) = f̃(y) = g̃(y) = 0 and

v(x, y) = exy cos y + xex sin y.

An analytic function with u(x, y) as real part is therefore

f(x, y) = ex (x cos y − y sin y) + iex (y cos y + x sin y) .
3

2) (i) The function u(x) is said to have exponential growth α if there exists
a constant µ such that

|u(x)| ≤ µeαx for x > 0, with α, µ ∈ R.

We compute

|f1(x)| = |5| ≤ 6 ⇒ α = 0

|f2(x)| =
��2e3βx

�� ≤ 2eax ⇒ α > 3β

3
(ii) The existence of the Laplace transform is guaranteed by the following

argument

Lu(x) ≤
� ∞

0

|u(t)| e−txdt

≤ µ

� ∞

0

eαxe−txdt

= µ

� ∞

0

e(α−x)tdt <∞ for x > α.

(iii) The Laplace transform for the derivative u′(x) of the function u(x)
is 3

Lu′(x) =
� ∞

0

u′(t)e−txdt = u(t)e−tx
��∞
0
+ x

� ∞

0

u(t)e−txdt

= xLu(x)− u(0),

where we integrated by parts. Now compute

Luiv(x) = xLu′′′(x)− u′′′(0) = x2Lu′′(x)− xu′′(0)− u′′′(0)
= x3Lu′(x)− x2u′(0)− xu′′(0)− u′′′(0)
= x4Lu(x)− x3u(0)− x2u′(0)− xu′′(0)− u′′′(0)

(iv) We act on the original equation with the Laplace transform 10

Luiv(x)−Lu(x) = 0
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Using the formula derived in (iii) we rewrite the equation as

x4Lu(x)− x3u(0)− x2u′(0)− xu′′(0)− u′′′(0)− y(x) = 0.
With the initial conditions u(0) = 0, u′(0) = 1, u′′(0) = 0 and
u′′′(0) = 0 this becomes

x4Lu(x)− x2 −Lu(x) = 0.
Therefore

Lu(x) = x2

x4 − 1 =
Ax+B

x2 − 1 +
Cx+D

x2 + 1
,

where we used a partial fraction expansion. Therefore

x2 = (Ax+B)
�
x2 + 1

�
+ (Cx+D)

�
x2 − 1

�
.

For x = 1, x = −1 and x = 0 this becomes

1 = 2 (A+B) , 1 = 2 (−A+B) and 0 = B −D.
Therefore A = 0, B = 1/2, D = 1/2. The cubic term in x gives
A+ C = 0, such that C = 0. Thus

Lu(x) = 1/2

x2 − 1 +
1/2

x2 + 1
.

Using the table for the inverse Laplace transform we obtain

u(x) =
1

2
L−1

	
1

x2 − 1



+
1

2
L−1

	
1

x2 + 1



=
1

2
(sin x+ sinh x) .

(v) First scale s→ λs, such that the equation becomes 6

e−x
2

= λκ

� ∞

−∞
e−(x−s)

2

φ(s)ds

Introducing the function v(x) = e−x
2

, this can be rewritten as

v(x) = λκv ∗ φ(x)
Acting on this equation with the Fourier operator F gives

Fv(x) = F(λκv ∗ φ)(x) = λκF(v ∗ φ)(x) = λκFv(x)Fφ(x).
Therefore we obtain

1

λκ
= Fφ(x),

such that

φ(x) = F−1 1

λκ
(x) =

1

λκ
F−11(x) = 1

λκ
δ(x).
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3) (i) First rotate the wedge region W by −iπ/18 6

ŵ = f̂(z) = ze−iπ/16,

such that the new wedge region is

W ′ = {r, θ : r ∈ R+,− π
16
≤ θ < π

16
}.

Next map this wedge to the entire right half plane by

w̃ = f̃(ŵ) = ŵ8.

Finally we map the right half plane to the unit disk

w = f̌(w̃) =
w̃ − 1
w̃ + 1

.

Thus the map which maps W onto the unit disk is

w = f(z) = f̌ ◦ f̃ ◦ f̂(z) = f̌ ◦ f̃(ze−iπ/16) = f̌(−iz8) = z8 − i
z8 + i

.

We compute: 2

f(0) = −1, f(1) = −i, f(eiπ/8) = i, f(eiπ/16) = 0.

The points z1, z2, z3 are on the boundary of W and are mapped
correctly onto the unit circle. The point z4 is in the interior of the
W and is mapped correctly into the interior of the unit circle.

The existence of the map is guaranteed by the Riemann mapping
theorem: Given a simply connected region D ⊂ C (i.e. D has no 2
holes) which is not the entire plane and a point z0 ∈ D. Then there
exists an analytic function f : z �→ w which maps D one-to-one onto
the interior of the unit disk |w| < 1. The uniqueness of the map can
be achieved with a suitable normalization condition f(z0) = 0 and
f ′(z0) > 0. 3

(ii) Definition: A branch F(z) of a multi-valued function f(z) is any
single valued function, which is analytic in some domain D ⊂ C,
where F(z 0) =f(z0) for all z0 ∈ D.
Definition: A branch cut is a curve in the complex plane across
which an analytic multivalued function is discontinuous.

Definition: A point which is shared by all branches of the function
is called a branch point.
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12
(iii) The function g(z) has three branch points at z = 9 and at z = ±6.

For the arguments of the logarithm we can write

z ± 6 = |z ± 6| eiθ1/2 and z − 9 = |z − 9| eiθ3

such that

g(z) = ln

	
z2 − 36
z − 9



= ln(z + 6) + ln(z − 6)− ln(z − 9)

= ln

����
z2 − 36
z − 9

����+ i(θ1 + θ2 − θ3)

We have now various choices for the restriction on θ1, θ2 and θ3 :

Assuming the principal values for the logarithms means:

−π < θ1, θ2, θ3 ≤ π

Let us now consider the different regions on the real axis:

• z ∈ (9,∞): On this part of the axis there is no problem as θ1, θ2 and
θ3 are all continuous when crossing the axis.

• z ∈ (6, 9): On this line segment θ1 and θ2 are continuous, but θ3
jumps and therefore we require a cut.

• z ∈ (−6, 6): When crossing this part of the axis both θ2 and θ3 are
discontinuous. However, the relevant quantity, which is the difference
θ1+θ2−θ3 is continuous. Above the axis we have θ1 = 0, θ2 = θ3 = π,
such that θ1 + θ2 − θ3 = 0 and below the axis we have θ1 = 0,
θ2 = θ3 = −π and therefore also θ1+ θ2− θ3 = 0. This means no cut
is required on this segment.

• z ∈ (−∞,−6): On this line segment we have above the axis θ1 =
θ2 = θ3 = π such that θ1 + θ2 − θ3 = π and below the axis we
have θ1 = θ2 = θ3 = −π such that θ1 + θ2 − θ3 = −π. This means
the function is discontinuous and we need a branch cut to make it
analytic.

Overall we therefore require branch cuts at the line segment (−∞,−6)
and (6, 9) in order to make the function g(z) single valued and analytic.

4) (a) (i) (1 mark) Integrating the differential equation, we have y = L[x, y(x)],
where

L[x, y(x)] =

� x

0

3s2(y(s) + 1)ds.
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(ii) (4 marks) The Picard iterates are defined recursively as

yn+1(x) =

� x

0

3s2(yn(s) + 1)ds.

So if y1(x) = 0, we have

y1(x) =

� x

0

3s2(0 + 1)ds = x3,

and

y2(x) =

� x

0

3s2(s3 + 1)ds =
1

2
x6 + x3.

(iii) (5 marks) The DE has the form dy/dx = f(x, y), where f(x, y) =
3x2(y + 1). Both f and fy = 3x

2 are continuous for all x and y,
and thus continuous in the rectangle

R = {(x, y) | 0 ≤ x ≤ a, −b ≤ y ≤ b}

for all a, b > 0. So the hypotheses of Picard’s are satisfied.
We have M = maxR |f(x, y)| = 3a2(b + 1), and the theorem
states that the initial value problem has a unique solution for

0 ≤ x ≤ α, where α = min
�
a, b

M

�
= min


a, b

3a2(b+1)

�
. Taking

a = 2/3 and b = 8, we obtain α = 2/3. (Other choices of a and
b will serve.)

(b) (i) (4 marks) Calculate L[x] = − 3
x4
+ 3
x4
= 0 and L[x3] = − 3

x2
+ 3
x2
=

0. The Wronskian W (y1, y2)(x) =

������

x x3

1 3x2

������
= 2x3 �= 0 for x > 1.

So f1 and f2 form a fundamental set of solutions.

(ii) (9 marks) The Green’s function for the self-adjoint equation
(py′)′ + qy = −f has the following properties:

(1) G(x, t) satisfies the homogeneous DE with respect to x (x �=
t)

(2) G(x, t) satisfies the boundary conditions

(3) G(x, t) is continuous at x = t

(4) ∂G
∂x

is discontinuous at x = t with ∂G
∂x
|x=t+0− ∂G

∂x
|x=t−0 = − 1

p(t)

By the first property

G(x, t) =

�
a(t)x+ b(t)x3, 1 ≤ x ≤ t
c(t)x+ d(t)x3, t ≤ x ≤ 2.
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The second property implies G(1, t) = a + b = 0 =⇒ a = −b,
and G(2, t)− 2Gx(2, t) = (2c+ 8d)− 2(c+ 12d) = 0 =⇒ d = 0.
Thus

G(x, t) =

�
b(t)(x3 − x), 1 ≤ x ≤ t
c(t)x, t ≤ x ≤ 2.

Next the symmetry property implies

G(x, t) =

�
kt(x3 − x), 1 ≤ x ≤ t
k(t3 − t)x, t ≤ x ≤ 2

for some constant k, and then property (3) is automatically satis-
fied. Finally using the last property, we get k(t3−t)−kt(3t2−1) =
−t3 =⇒ k = 1

2
. Hence

G(x, t) =

�
1
2
t(x3 − x), 1 ≤ x ≤ t
1
2
(t3 − t)x, t ≤ x ≤ 2.

(iii) (2 marks) So the solution is

y(x) =

� 2

1

G(x, t)(−f(t)) dt = −x
2

� x

1

(t3−t)f(t) dt−1
2
(x3−x)

� 2

x

tf(t) dt.

5) (a) (6 marks) The characteristic equation is

dy

dx
=
x(y2 + 1)

y(x2 + 1)
.

Separating variables and integrating, we obtain

�
y dy

y2 + 1
=

�
x dx

x2 + 1
,

so that
ln(y2 + 1) = ln(x2 + 1) + C.

Exponentiating, we obtain the characteristic curves

y2 + 1

x2 + 1
= K.

Hence the general solution of the PDE is given by

u(x, y) = f(K) = f

	
y2 + 1

x2 + 1



,
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where f is an arbitrary function. The initial condition gives

x2 = u(x, 0) = f

	
1

x2 + 1



,

and therefore f(z) = 1
z
− 1. Hence the particular solution is

u(x, y) =
x2 + 1

y2 + 1
− 1 = x2 − y2

y2 + 1
.

(b) (i) (5 marks) We have b2 − 4ac = (x + y)2 − 4yx = (x − y)2 > 0,
since x �= y. So the equation is hyperbolic. The characteristics
are solutions of the differential equation

y

	
dy

dx


2
− (x+ y)dy

dx
+ x = 0.

So

dy/dx =
1

2y
(x+ y ± (x− y)) = x

y
, 1.

giving characteristics y2 = x2 + c1 and y = x+ c2.

(ii) (10 marks) The characteristic coordinates can be taken to be
z = −c1 = x2 − y2 and w = −c2 = x − y. To transform to
canonical form, we calculate

ux = uzzx + uwwx = 2xuz + uw.

uy = uzzy + uwwy = −2yuz − uw.
uxx = 2uz + 2x(uz)x + (uw)x

= 2uz + 2x(2xuzz + uzw) + 2xuwz + uww

= 4x2uzz + 4xuzw + uww + 2uz.

uyy = −2uz − 2y(uz)y − (uw)y
= −2uz − 2y(−2yuzz − uzw) + 2yuwz + uww
= 4y2uzz + 4yuzw + uww − 2uz.

uxy = 2x(uz)y + (uw)y

= 2x(−2yuzz − uzw)− 2yuwz − uww
= −4xyuzz − 2(x+ y)uwz − uww

So the lefthand side of the PDE transforms to
�
y(4x2) + (x+ y)(−4xy) + x(4y2)

�
uzz

+(y(4x) + (x+ y)(−2)(x+ y) + x(4y)) uzw
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+(y(1) + (x+ y)(−1) + x(1)) uww
+(y(2) + (x+ y)(0) + x(−2)) uz

which is equal to

−2(x− y)2uzw − 2(x− y)uz.

So dividing the original differential equation by −2, we obtain

w2uzw + wuz = 1.

(iii) (4 marks) Integrating the DE with respect to z we have

w2uw + wu = z + f1(w),

a first-order linear equation in w. Dividing by w we obtain

d

dw
(wu) =

z

w
+ f2(w),

and then, integrating,

wu = z ln(w) + f3(w) + g(z).

So

u =
z lnw

w
+
g(z)

w
+ f(w)

= (x+ y) ln(x− y) + g(x
2 − y2)
x− y + f(x− y)

where f and g are arbitrary functions.

6) (a) (i) (2 marks) � β

α

r(x)φ(x)ψ(x) dx = 0

where φ(x) and ψ(x) are eigenfunctions corresponding to distinct
eigenvalues.

(ii) (4 marks) Suppose λ (possibly complex) is an eigenvalue with
associated eigenfunction φ(x), so

(pφ′)′ + λrφ = 0.

Taking the complex conjugate gives

(pφ
′
)′ + λrφ = 0.
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So λ is also an eigenvalue with associated eigenfunction φ(x). If
λ �= λ, then by the orthogonality property

� β

α

r(x)φ(x)φ(x) dx =

� β

α

r(x) |φ(x)|2 dx = 0.

Since r(x) > 0, the integrand is positive and the integral cannot
be zero. Hence λ = λ so that λ is real.

(b) (i) (5 marks) Suppose λ < 0, and put λ = −µ2, where µ is positive,
real. Then the DE becomes y′′2y = 0, which has general solution
y(x) = A coshµx + B sinhµx. The first BC implies A = 0, and
then the second that 2y(1)− y′(1) = −µB coshx + 2B sinh x =
0 =⇒ tanhx = 1

2
µ. This has one solution for positive µ, as a

plot of the graphs of z = tanhµ and z = 1
2
µ shows.

(ii) (2 marks) When λ = 0, the differential equation y′′ = 0 has
general solution y = Ax + B. The boundary conditions are
y(0) = B = 0 and 2y(1) − y′(1) = A = 0, so there are no
non-trivial solutions. Therefore 0 is not an eigenvalue.

(iii) (7 marks) Since λ > 0, let λ = µ2 where µ is positive, real. Then
the DE is y′′2y = 0, which has GS y(x) = A cosµx+B sinµx. The
first BC gives A = 0, and the second 2y(1)− y′(1) = 4B sinµ+
B cosµ = 0. When B �= 0, this implies 2 tanµ− µ = 0.
Consider the curves z = tanµ and z = 1

2
µ. The points of in-

tersection correspond to the eigenvalues λ = µ2.The function
z = tanµ has positive zeros at multiples of π and vertical as-
ymptotes µ = π/2, 3π/2, approached from the left as z → ∞,
and so there are points of intersection of the two curves between
every pair of consecutive positive asymptotes, and we label them
µ1 < µ2 < . . .. Since tan

′(0) = 1 > 1
2
, note the the first point of

intersection for µ > 0 is between the first positive zero and the
second positive asymptote, which occur at µ = π and µ = 3

2
π

respectively. Hence λ1 is between the squares π2 and 9
4
π2. As n

grows large µn approaches (2n+1)π/2. Thus λn+1−λn tends to
(2n+ 3)2π2/4− (2n+ 1)2π2/4 = 2(n+ 1)π2.

(iv) (2 marks) From (i), ψ(x) = sinh(νx), where ν is the unique pos-
itive solution of tanh ν = 1

2
ν, and, from (iii), φn(x) = sin(µnx),

where µn, n = 1, 2, . . . are the positive solutions of tanµ =
1
2
µ.

(v) (3 marks) It has no negative eigenvalues. To see that, follow the
argument in (i), obtaining the general solution y(x) = A coshµx+
B sinhµx. The first BC still implies A = 0, and then the (mod-
ified) second condition implies y(1) − 2y′(1) = −µ2B coshµ +
B sinhµ = 0 =⇒ tanhµ = 2µ. This has no solution for positive
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µ, as f(µ) = 2µ − tanhµ is an increasing function vanishing at
µ = 0; indeed f ′(µ) = 2− sech2 µ = 1 + tanh2 µ > 0.

Internal Examiners: Professor J. Chuang
Professor A. Fring

External Examiners: Professor J. Rickard
Professor J. Lamb
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