
0. Preliminaries

Course material:
The entire course material is available on the course web site:
http://www.staff.city.ac.uk/ fring/MathMeth/
This includes the lecture notes, exercise sheets, course work sheets,
past papers and some relevant links.

Assessment:
There will be 1 coursework counting 15% a class test counting 5% and
an exam in May counting 80% towards the final mark.
All marks will be reported on Moodle.

Andreas Fring (City University London) MA3603 Mathematical Methods Spring 2013 1 / 28



Books:
The notes should be self-contained but there are also useful books:

Complex variables : introduction and applications / M. J. Ablowitz,
A. S. Fokas (Cambridge : Cambridge University Press, 2003)
Complex variables and their applications / Anthony D. Osborne
(Harlow : Addison Wesley Longman, 1999)
Fundamentals of complex analysis with applications to
engineering and science / E.B. Saff, A.D. Snider; (Upper Saddle
River, NJ : Prentice Hall, c2003)
Applied complex analysis with partial differential equations / N. H.
Asmar, Gregory C. Jones (Upper Saddle River, N.J. ; London :
Prentice Hall, c2002)
Complex analysis : an introduction to the theory of analytic
functions of one complex variable / Lars V. Ahlfors (New York ;
London : McGraw-Hill, 1979)

All books are available in the City library.
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Structure of the course:
The course has three main sections:

I Complex analysis with an emphasis on conformal mappings.
II Application to boundary value problems.

III Transform methods and their applications to differential equations.
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1. Complex Analysis

1.1. Complex Algebra

How to handle complex numbers?

Definition: A complex number (variable) denoted by z is an ordered
pair of real numbers (variables) x , y ∈ R

z = (x , y) or z = x + iy

with i =
√
−1.

x = Re z is called the real part of z and

y = Im z is called the imaginary part of z.

Ordered means that (x , y) 6= (y , x).
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1.1.1 Arithmetic operations, the field C
How to compute with complex numbers? Take any two complex
numbers

z = x + iy and w = u + iv

Addition:

z + w = (x + iy) + (u + iv) = (x + u) + i(y + v) ∈ C

Multiplication:

z · w = (x + iy) · (u + iv) = (xu − yv) + i(yu + xv) ∈ C

Division:

Assume z
w

= s + it ∈ C w 6= 0 (1)

Find s and t , if they exist. From (1) follows

z = x + iy = w · (s + it) = (su − vt) + i(sv + ut).

Equate the real and imaginary parts

x = su − vt and y = sv + ut ,
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Solve for s and t

s =
xu + yv
u2 + v2 and t =

yu − xv
u2 + v2 . (2)

Therefore

z
w

=
xu + yv
u2 + v2 + i

(
yu − xv
u2 + v2

)
=

zw̄
ww̄

w 6= 0. (3)

Since x , y , u, v ∈ R⇒ s, t ∈ R⇒ z
w ∈ C

Therefore like Q and R, the complex numbers also constitute a field ,
which is denoted by C.
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Definition: A set of objects is said to be a field if the addition and
multiplication is well defined and if for all z, w and s we have

commutativity: z + w = w + z z · w = w · z
associativity: z + (w + s) = (z + w) + s z · (w · s) = (z · w) · s
distributivity: z · (w + s) = z · w + z · s

a zero element exists
every non-zero element has an inverse with respect to · and +.

For C:
· and + are well defined
commutativity, associativity and distributivity are easily checked
the zero element is (0,0) = 0 + i0 = 0
the identity element is (1,0) = 1 + i0 = 1.

Note: Z is only a ring since the last requirement does not hold.
For instance: 7 ∈ Z but the inverse element 1/7 /∈ Z.)
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1.1.2 Complex conjugation and absolute value
Definition: The operation which sends z = x + iy into z̄ = x − iy is
called complex conjugation. We say z̄ (or z∗) is the conjugate of z.
Clearly

z + w = z̄ + w̄ and z · w = z̄ · w̄ .

The complex conjugation is an involutory transformation, that is

z̄ = z.

Definition: The modulus or absolute value of a complex number
z = x + iy is defined as

|z| =
√

z · z̄ =
√

x2 + y2 ≥ 0

We have

|z · w | =
√

(z · w)(z · w) =
√

(z · w)(z̄ · w̄) =
√

(z · z̄)(w · w̄) = |z|·|w | ,

and the triangle inequalities

|z| − |w | ≤ |z + w | ≤ |z|+ |w | (4)

For the proof of (4) see sheet 1 task 2.
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1.1.3. The Gauß-plane, polar form
We can represent a complex number in the complex : (Gauß)-plane:

From the figure
x = r cos θ and y = r sin θ,

With Euler’s formula we write z in polar form as

z = r cos θ + ir sin θ = reiθ .
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Graphical interpretation:

|z| is the distance between the origin and the point (x , y).
The angle θ is called the argument of z, i.e.

r = |z| and θ = arg z = arctan y
x .

The complex conjugation is a reflection about the real axis.

Note:
arg z is multi-valued as all θn = θ + 2πn for n ∈ Z give the same z.
A unique so-called principle value is selected by convention.
For instance the choice θ = θ0 + 2πn with −π < θ0 ≤ π with a specific
value for n, say n = 0 gives only one definite value.
We adopt here this convention.
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Example 1: First convert every fraction of two rational numbers into
the form z = x + iy . Then find the Gauß form

4
1− i

√
3

=
4(1− i

√
3)

(1− i
√

3)(1− i
√

3)
= 1+i

√
3 = 2(cos

π

3
+i sin

π

3
) = 2eiπ/3.

Example 2: We can write zn for r = 1 in two alternative ways

zn = einθ = cos nθ + i sin nθ =
(

eiθ
)n

= (cos θ + i sin θ)n.

This is the de Moivre formula.

Using complex numbers this identity was trivial to prove, whereas more
effort is needed in a purely trigonometric setting.
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1.1.4. The n-roots of z
To compute the n-th root of a complex number z0 = z1/n we solve

zn
0 = z (5)

for z0. With z0 = r0 exp(iθ0) and z = r exp(iθ) equation (5) reads

rn
0 einθ0 = reiθ

therefore
r0 = n

√
r and θ0 =

θ

n
+

2kπ
n

for k ∈ Z.

Therefore the n distinct solutions of (5) are

z(k)
0 = n
√

r
[
cos

(
θ+2kπ

n

)
+ i sin

(
θ+2kπ

n

)]
= n
√

re
θ+2kπ

n i for k = 0,1, . . . ,n−1.

Special case: n-th root of unity for z = 1, i.e. r = 1 and θ = 0

z(k)
0 = cos

(
2kπ

n

)
+ i sin

(
2kπ

n

)
= e

2kπ
n i for k = 0,1, . . . ,n − 1.

One usually denotesz(1)
0 =: ω, such that we simply havez(2)

0 = ω2,
z(3)

0 = ω3, etc.
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1.2 Analytic functions
1.2.1 Functions of a complex variable

Definition: The map

f : z 7→ w = f (z) (6)
= u(x , y) + iv(x , y)

which assigns to each complex number z = x + iy ∈ D ⊂ C exactly
one other complex number is called a function of a complex variable.

- D is called the domain of definition.
- The totality of all possible values f (z)for all z ∈ D is called the range.
- The map f−1 : w 7→ z = f−1(w) is called the inverse of f .
- A point z0 ∈ D, which is mapped by f onto itself is called a fixed point,
i.e. w = f (z0) = z0.
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We have the following picture in mind:
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Example 1: The domain of the complex valued function

w = f (z) =
1

z2 + 1
is D = C\{±i}.
Example 2: The real and imaginary part of the complex valued
function is computed as

w = f (z) = z2 = (x + iy)2

⇒ u(x , y) = x2 − y2, v(x , y) = 2xy .

Example 3: The fixed point of

w = f (z) =
6z − 9

z
is z0 = 3. This follows from f (z0) = z0 ⇔ z2

0 − 6z0 + 9 = 0.
Example 4: The inverse function of w = f (z) = 2z − 4 is

z = f−1(w) =
w
2

+ 2.

This follows from exchanging z ↔ w , that is solving z = 2w − 4. We
may also verify that f (f−1(z)) = z and f−1(f (z)) = z.
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Example 5: The inverse function of w = f (z) = exp z = r exp(iθ) is

z = ln r + iθ + 2πin with n ∈ Z. (7)

We note in example 5 that there is not a one-to-one correspondence
between values in the domain and the range. Such functions have a
special name:

Definition: A multivalued function acquires more than one value in its
range for at least one value in its domain.

We will see later how to cure this.
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1.2.2 Limits, Continuity and Complex derivatives
Definition: The function f (z) is said to possess the limit w0 as z tends
to z0

lim
z→z0

f (z) = w0 (8)

iff for every ε > 0 there exists a δ > 0, such that |f (z)− w0| < ε for all
values of z for which |z − z0| < δ, z 6= z0.
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Example: Use the previous definition to argue that

lim
z→3

z2 − 9
z − 3

= 6.

Solution :

The domain for f (z) = (z2 − 9)/(z − 3) is D = C\{3}, which
means that f (z = 3) is not defined.
On D we have f (z) = (z + 3), such that

|f (z)− 6)| = |z + 3− 6| = |z − 3| for z 6= 3.

This means for every ε > 0 for which |f (z)− 6)| < ε there exists a
δ = ε > 0 for which |z − 3| < δ.
Therefore we have limz→z0=3 f (z) = 6.

More practical:
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Theorem 1: Introducing the following quantities

f (z) = u(x , y) + iv(x , y), z = x + iy , z0 = x0 + iy0, w0 = u0 + iv0

the limit
lim

z→z0
f (z) = w0

exists iff

lim
x→x0
y→y0

u(x , y) = u0 and lim
x→x0
y→y0

v(x , y) = v0.

Proof : We omit this here.
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Definition: The function f (z) is said to be continuous at the point z0 iff
limz→z0 f (z) = f (z0).

Definition: Let f be a function defined on some domain D ⊂ C, with
z0 ∈ D. Then f is said to be (complex) differentiable if there exists a
continuous function f ′:D → C for all z ∈ D

f ′(z0) = df
dz

∣∣∣
z=z0

= limh→0
f (z0+h)−f (z0)

h ,

with h = ∆z = z − z0. f ′ is called the derivative of f.

Note that unlike as for real valued functions we have now various
options to take the limit h→ 0.
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1.2.3 Analyticity and the Cauchy-Riemann equations

Suppose that the limit f ′(z0) exists. Then we can write

f ′(z0)= lim
hx→0
hy→0

u(x0 + hx , y0 + hy )− u(x0, y0) + iv(x0 + hx , y0 + hy )−iv(x0, y0)

hx + ihy
,

with f (z) = u(x , y) + iv(x , y) and h = hx + ihy .
Now we have two options to take the limit, either in the order hy → 0
and then

f ′(z0) = lim
hx→0

u(x0 + hx , y0)− u(x0, y0) + iv(x0 + hx , y0)− iv(x0, y0)

hx

=
∂u
∂x

+ i
∂v
∂x

(9)
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or to take first the limit hx → 0 and then

f ′(z0) = lim
hy→0

u(x0, y0 + hy )− u(x0, y0) + iv(x0, y0 + hy )− iv(x0, y0)

ihy

= −i
∂u
∂y

+
∂v
∂y
. (10)

We used here Theorem 1, which allows us to split the limit for u and v .
Comparing (9) and (10) we find the
Cauchy-Riemann equations (conditions)

∂u
∂x = ∂v

∂y and ∂u
∂y = −∂v

∂x . (11)

From the above argument it is clear that the Cauchy-Riemann
condition is a necessary condition for the derivative f ′(z0) to exist. The
following theorem provides also a sufficient condition.
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Theorem 2: Suppose that for a function f (z) = u(x , y) + iv(x , y) all
four partial derivatives of u and v are continuous at the point z0 and in
addition satisfy the Cauchy-Riemann condition, then the derivative
f ′(z0) exists.
Proof : We omit this here.
Example: We consider once more the function

f (z) = z2 = u(x , y) + iv(x , y) = x2 − y2 + i2xy

We verify the Cauchy-Riemann condition

∂u
∂x

= 2x =
∂v
∂y

and
∂u
∂y

= −2y = −∂v
∂x
,

and therefore
f ′(z) = 2x + i2y = 2z.
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Definition: A function f of a complex variable z is said to be
analytic in the domain D ⊂ C if its derivative exists for all z∈ D .
A function is said to be analytic in the point z0 if there exists a
neighbourhood around z0 in which f is analytic.
When D = C the function is called an entire function.

Theorem 3:
The derivative of an analytic function is also an analytic function.
Proof : We omit this here.
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1.2.4. Harmonic functions and the Laplace equation
Definition: A function u which satisfies the Laplace equation ∆u = 0
is said to be a harmonic function.
A function v is said to be the conjugate harmonic function of u,if they
are both harmonic functions and satisfy the Cauchy-Riemann
equations.
Corollary 1: The real and imaginary parts of an analytic function are
harmonic functions. Conversely, if the two functions u(x , y) and v(x , y)
are harmonic functions then f (z) = u(x , y) + iv(x , y) is an analytic
function.
Proof :

We differentiate the Cauchy-Riemann equations with respect to x
and y

∂2
x u = ∂x∂yv and ∂2

y u = −∂x∂yv ,

respectively.
Theorem 3 guarantees that the second derivatives exist.
Adding these two equation gives

∆u = (∂2
x + ∂2

y )u = 0.
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Similarly differentiating the Cauchy-Riemann equations with
respect to y and x instead gives ∆v = 0.
The converse is shown by integration.
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Example 1: Once more we consider the function

f (z) = z2 = u(x , y) + iv(x , y) = x2 − y2 + i2xy

Clearly u and v are harmonic functions

∆u = ∂2
x u + ∂2

y u = ∂x (2x)− ∂y (2y) = 0,

∆v = ∂2
x v + ∂2

y v = ∂x (2y)− ∂y (2x) = 0.

Example 2: Consider

f (z) = z3 = (x + iy)3 = (x3 − 3xy2) + i(3x2y − y3) = u(x , y) + iv(x , y)

It is easy to see that u and v are harmonic functions

∆u = ∂2
x u + ∂2

y u = ∂x (3x2 − 3y2) + ∂y (−6xy) = 6x − 6x = 0,

∆v = ∂2
x v + ∂2

y v = ∂x (6xy) + ∂y (6x − 3y2) = 6y − 6y = 0.
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Example 3: Given a harmonic function one can use the
Cauchy-Riemann equations to compute its conjugate harmonic
function and thereafter construct an analytic function.
For instance taking u(x , y) = cosh x cos y it follows

∂u
∂x

= cos y sinh x =
∂v
∂y

⇒ v = sinh x
∫

cos ydy = sinh x sin y + sinh xg(x),

∂u
∂y

= − sin y cosh x = −∂v
∂x
⇒

v = sin y
∫

cosh xdx = sinh x sin y + sinh yh(y),

such that g(x) = h(x) = 0. The conjugate harmonic function is
therefore v(x , y) = sinh x sin y .
Hence f (x , y) = cosh x cos y + i sinh x sin y is an analytic function by
corollary 1.
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