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A�������: This is an introduction into frequently used mathematical methods focusing

on complex analysis. The course consists of three main parts. In the first part we

study basic topics in complex analysis with an emphasis on conformal mappings. In the

second part we apply these techniques to solve boundary value problems of Dirichlet and

Neumann type. In the third part we discuss transform methods, in particular Fourier and

Lagrange transformations, and their applications to differential equations.

1. Complex Analysis

"The imaginary number takes mathematics to another dimension. It was discovered in

sixteenth century Italy at a time when being a mathematician was akin to being a modern

day rock star, when there was ’nuff respect’ to be had from solving a particularly ’wicked’

equation. And the wicked equation of the day went like this: ’If the square root of +1

is both +1 and -1, then what is the square root of -1?’ Previously, mathematicians had

rolled their eyes skyward and prayed for divine intervention. But where others failed, the

creative Italian Rafaello Bombelli triumphed with his invention of the imaginary number.

The imaginary number is the square root of -1 and is known as ’i’." Simon Singh

1.1 Complex Algebra

First we have to learn how to handle complex numbers. Recall

Definition: A complex number (variable) denoted by z is an ordered pair of real numbers

(variables) x, y ∈ R
z = (x, y) or z = x+ iy (1.1)

with i =
√
−1. Here x = Re z is called the real part of z and y = Im z is called the

imaginary part of z.

Ordered means that (x, y) �= (y, x). One could just provide some rules for the expressions
in the form (x, y), but it will be more convenient for us to use the second equation in (1.1),

which is completely equivalent.
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1.1.1 Arithmetic operations, the field C

We will now see how to compute with complex numbers. Let us take for this purpose two

complex numbers of the form

z := x+ iy and w := u+ iv with x, y, u, v ∈ R, (1.2)

and investigate how combine subject to various arithmetic operations. The addition of

these numbers yields again a complex number of the form (1.1) as we can see easily

z +w = (x+ iy) + (u+ iv) = (x+ u) + i(y + v). (1.3)

Obviously the expression on the right hand side is again of the form (1.1), since (y + v),

(x + u) ∈ R. Likewise the multiplication of two complex numbers gives again a complex
number

z · w = (x+ iy) · (u+ iv) = (xu− yv) + i(yu+ xv), (1.4)

since (xu−yv), (yu+xv) ∈ R. That is also holds for the division is slightly less obvious. Let
us now verify that this is in fact also a meaningful composition of two complex numbers.

Suppose that this operation is of the form

z

w
= s+ it w �= 0; s, t ∈ R, (1.5)

and let us determine s and t, if they exist. From (1.5) follows

x+ iy = w · (s+ it) = (su− vt) + i(sv + ut). (1.6)

Equating in (1.6) the real and imaginary parts on both sides of the equation gives the two

coupled linear equations

x = su− vt and y = sv + ut, (1.7)

which we can solve uniquely for s and t. We easily find

s =
xu+ yv

u2 + v2
and t =

yu− xv

u2 + v2
. (1.8)

Clearly s, t ∈ R, since x, y, u, v ∈ R and the addition, multiplication and division of real
numbers produces real numbers. Therefore the division of two complex numbers results

indeed into another complex number

z

w
=

xu+ yv

u2 + v2
+ i

�
yu− xv

u2 + v2

�
=
� zw̄
ww̄

�
w �= 0. (1.9)

We have indicated here that for practical purposes we simply have to multiply the

nominator and denominator by the conjugate of the denominator w̄ (see section 1.1.2 for

definition) in order to obtain a complex number in the form (1.1).

This means just like the rational numbers Q and the real numbers R, the complex

numbers also constitute what is referred to as a field, denoted usually by C. For a set of
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objects to be a field we require well defined addition and multiplication. In addition, we

have to verify for all elements z, w and s in the field that the following properties hold

commutativity: z +w = w+ z z ·w = w · z,
associativity: z + (w + s) = (z +w) + s z · (w · s) = (z ·w) · s,
distributivity: z · (w + s) = z ·w + z · s,

(1.10)

that a zero element exists and we also have to guarantee that every non-zero element

has an inverse with respect to multiplication and addition. For the field C we have seen

that addition and multiplication are well defined. The properties (1.10) are easily verified.

The zero element is (0, 0) = 0 + i0 = 0, the identity element is (1, 0) = 1 + i0 = 1 and

distributivity is checked by direct computation.

(Recall that the integers Z only constitute a ring, but not a field, as the last requirement

does not hold. For instance, taking 7 ∈ Z we find that the inverse element 1/7 /∈ Z.)

1.1.2 Complex conjugation and absolute value

Definition: The operation which sends z = x + iy into z̄ := x − iy is called complex

conjugation. We say z̄ is the conjugate of z. (Sometimes also the notation z∗ is used for

z̄.)

Clearly we have the following rules

z +w = z̄ + w̄ and z · w = z̄ · w̄ , (1.11)

which follow by direct computation. Furthermore, we may convince ourselves that the

complex conjugation is an involutory transformation, that is applying it twice yields the

original argument

z̄ = z. (1.12)

Definition: The modulus or absolute value of a complex number z = x+ iy is defined as

|z| =
√
z · z̄ =

�
x2 + y2 ≥ 0 (1.13)

We have

|z · w| =
�
(z · w)(z ·w) =

�
(z ·w)(z̄ · w̄) =

�
(z · z̄)(w · w̄) = |z| · |w| , (1.14)

and the triangle inequalities

|z| − |w| ≤ |z +w| ≤ |z|+ |w| (1.15)

Proof : To prove (1.15) we start with

|z +w|2 = (z +w)(z̄ + w̄) = zz̄ +wz̄ + zw̄ +ww̄ = |z|2 + |w|2 + 2Re(zw̄). (1.16)

Therefore we deduce

|z +w|2 − (|z|+ |w|)2 = −2 |z| |w|+ 2Re(zw̄), (1.17)
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Since Re(zw̄) ≤ |zw̄| = |z| |w| it follows that

|z +w|2 − (|z|+ |w|)2 ≤ 0, (1.18)

which when taking the square root yields the second inequality in (1.15). The first

inequality is trivial. �

Alternatively we may think of a complex number as a two-dimensional vector �z = (x, y)

then these identities just become the usual relation for vectors in more generality. (recall

|�z| =
√
�z · �z = x2 + y2, see e.g. MA1607 Geometry & Vectors).

1.1.3 The Gauß-plane, polar form

For various reasons which we will discuss in more

Figure 1: Gauß on the 10 D-Mark note

detail below it is convenient to represent complex

numbers in the complex: (Gauß[1])-plane: From

figure 2 we read off directly that

x = r cos θ and y = r sin θ, (1.19)

which suggests, using Euler’s [2] formula, that we

can write z in the so-called polar form (or Gauß-

form) as

z = r cos θ + ir sin θ = reiθ . (1.20)

The angle θ is called the argument of
y = Im(z)

x = Re(z)

z = (x,y)

z = (x,y)

r = |z|

real axis

Figure 2: Complex (Gauß)-plane

z. We measure it in the so-called pos-

itive mathematical sense, that is anti-clockwise,

against the horizontal as indicated in fig-

ure 2. Note that arg z is multivalued as

all θn = θ+2πn for n ∈ Z give the same z.
A unique so-called principle value is se-

lected by convention. For instance, for a

specific value of n the choice θ = θ0+2πn

with −π < θ0 ≤ π gives only one defi-

nite value. We adopt here this conven-

tion. The distance r between the origin

and the point (x, y) in the Gauß-plane is

then given by the modulus of z. Thus,

for any complex number given in the standard form z = x+ iy we may compute r and θ

from the expressions

r = |z| =
�
x2 + y2 and θ = arg z = arctan y

x , (1.21)

which follow immediately from (1.19).
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The complex conjugation z̄ = re−iθ of z = reiθcorresponds therefore to a reflection

about the real axis as indicated in figure 2.

Some useful simple numbers in polar and normal form are: 1 = ei0 = e2πi, −1 = eiπ =

e−iπ, i = eiπ/2, −i = e−iπ/2, (1+i
√
3)/2 = eiπ/3, (1+i)/

√
2 = eiπ/4 and (

√
3+i)/2 = eiπ/6.

These numbers are worthwhile to remember as they emerge again and again.

Let us consider a few examples in order to see the working of these formulae:

Example 1: Using equation (1.9) we can convert every fraction of two rational numbers

into the form z = x+ iy. Subsequently we use (1.20) to obtain the Gauß form

4

1− i
√
3
=

4(1− i
√
3)

(1− i
√
3)(1− i

√
3)
= 1 + i

√
3 = 2(cos

π

3
+ i sin

π

3
) = 2eiπ/3. (1.22)

Example 2: In view of (1.20) we can write zn for r = 1 in two alternative ways

zn = einθ = cosnθ + i sinnθ =
�
eiθ
�n
= (cos θ + i sin θ)n, (1.23)

which is the de Moivre formula. Using complex numbers this identity is trivial to prove,

whereas more effort is needed in a purely trigonometric setting.

1.1.4 The n-roots of z

Computing the n-th root of a complex number z1/n =: z0 amounts to solving the equation

zn0 = z (1.24)

for z0. Thus when expressing the complex numbers in (1.24) in polar form z0 = r0 exp(iθ0)

and z = r exp(iθ), the equation reads

rn0 e
inθ0 = reiθ, (1.25)

and therefore we have

r0 =
n
√
r and θ0 =

θ

n
+
2kπ

n
for k ∈ Z. (1.26)

Thus the n distinct solutions of (1.24) are

z
(k)
0 = n

√
r
�
cos
�
θ+2kπ
n

�
+ i sin

�
θ+2kπ
n

�	
= n
√
re

θ+2kπ
n

i for k = 0, 1, . . . , n− 1. (1.27)

A special case of this are the n-th root of unity for z = 1, i.e. r = 1 and θ = 0

z
(k)
0 = cos

�
2kπ

n

�
+ i sin

�
2kπ

n

�
= e

2kπ
n
i for k = 0, 1, . . . , n− 1. (1.28)

One usually denotes z
(1)
0 = e

2πi
n =: ω, such that we simply have z

(2)
0 = ω2, z

(3)
0 = ω3, etc.

Note that unlike as for real numbers we therefore have that n
√
1 �= 1. For instance the

following identities hold: 11/3 = (e2πi)1/3 = e2πi/3 = (eiπ)2/3 = (−1)2/3.

1.2 Analytic functions

Having established how to manipulate complex numbers, let us see next how to deal with

functions of these numbers and study some of their basic properties.

1.2.1 Functions of a complex variable
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Definition: The map

z = f-1(w)

w = f(z)

(u(x
1
,y

1
),v(x

1
,y

1
))

(u(x
2
,y

2
),v(x

2
,y

2
))

(x
2
,y

2
)

w-planez-plane
v

u

y

x

(x
1
,y

1
)

Figure 3: The function f : z 	→ w = f(z).

f : z 	→ w = f(z) (1.29)

= u(x, y) + iv(x, y)

which assigns to each complex number

z = x+ iy ∈ D ⊂ C exactly one other

complex number is called a function of a

complex variable.

D is called the domain of definition.

The totality of all possible values f(z)

for all values z ∈ D is called the range.

The map f−1 : w 	→ z = f−1(w) is called the inverse of f .

A point z0 ∈ D, which is mapped by f onto itself is called a fixed point, i.e. w = f(z0) = z0.

Example 1: The domain of the complex valued function

w = f(z) =
1

z2 + 1
(1.30)

is D = C\{±i}.
Example 2: We compute the real and imaginary part of the complex valued function

w = f(z) = z2 = (x+ iy)2 (1.31)

⇒ u(x, y) = x2 − y2, v(x, y) = 2xy.

Example 3: The fixed point of

w = f(z) =
6z − 9

z
(1.32)

is z0 = 3, which follows from f(z0) = z0 ⇔ z20 − 6z0 + 9 = 0.
Example 4: The inverse function of w = f(z) = 2z − 4 is

z = f−1(w) =
w

2
+ 2, (1.33)

which follows simply from exchanging z ↔ w, that is solving z = 2w − 4. We may also
verify that f(f−1(z)) = z and f−1(f(z)) = z.

Example 5: The inverse function of w = f(z) = exp z = r exp(iθ) is

z = ln r + iθ + 2πin with n ∈ Z. (1.34)

We note here that there is not a one-to-one correspondence between values in the domain

and the range. Such functions have a special name:

Definition: A multivalued function acquires more than one value in its range for at least

one value in its domain.

— 6 —
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We shall see later how to remedy

z
0

z w
w0

z
z0

lim f(z) = w0

v

u

y

x

Figure 4: The limit of f(z) as z → z0.

such kind of behaviour and convert such

functions into proper single valued func-

tions as defined in (1.29).

1.2.2 Limits, Continuity and Com-

plex derivatives

Definition: The function f(z) is said

to possess the limit w0 as z tends to z0

lim
z→z0

f(z) = w0 (1.35)

iff for every ǫ > 0 there exists a δ > 0, such that |f(z)−w0| < ǫ for all values of z for

which |z − z0| < δ, z �= z0.

Example: Use the previous definition to argue that

lim
z→3

z2 − 9
z − 3 = 6. (1.36)

Solution : The domain for f(z) = (z2−9)/(z−3) isD = C\{3}, which means that f(z = 3)
is not defined. On D we have f(z) = (z + 3), such that

|f(z)− 6)| = |z + 3− 6| = |z − 3| for z �= 3. (1.37)

This means for every ǫ > 0 for which |f(z)− 6)| < ǫ there exists a δ = ǫ > 0 for

which |z − 3| < δ. Therefore we have limz→z0=3 f(z) = 6.

The following theorem provides an alternative and more practical way to compute the limit

defined in (1.35).

Theorem 1: Introducing the following quantities

f(z) = u(x, y) + iv(x, y), z = x+ iy, z0 = x0 + iy0, w0 = u0 + iv0 (1.38)

the limit

lim
z→z0

f(z) = w0 (1.39)

exists iff

lim
x→x0
y→y0

u(x, y) = u0 and lim
x→x0
y→y0

v(x, y) = v0. (1.40)

Proof : We omit this here.

Definition: The function f(z) is said to be continuous at the point z0 iff limz→z0 f(z) =

f(z0).

Definition: Let f be a function defined on some domain D ⊂ C, with z0 ∈ D. Then f is

said to be (complex) differentiable if there exists a continuous function f ′:D → C for all

z ∈ D

f ′(z0) =
df
dz





z=z0

= limh→0
f(z0+h)−f(z0)

h , (1.41)

— 7 —
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with h = ∆z = z − z0. f
′ is called the derivative of f.

Note that unlike as for real valued functions we have now various options to take the

limit h → 0, that means we have various pathes in the z-plane at our disposal. As a

consequence of this ambiguity we obtain some non-trivial equations.

1.2.3 Analyticity and the Cauchy-Riemann equations

Suppose that the limit f ′(z0) exists. Then we can write

f ′(z0) = lim
hx→0
hy→0

u(x0 + hx, y0 + hy)− u(x0, y0) + iv(x0 + hx, y0 + hy)− iv(x0, y0)

hx + ihy
, (1.42)

where we expand in (1.41) f(z) = u(x, y) + iv(x, y) and used h = hx + ihy. Now we have

two options to take the limit, either in the order hy → 0 and then

f ′(z0) = lim
hx→0

u(x0 + hx, y0)− u(x0, y0) + iv(x0 + hx, y0)− iv(x0, y0)

hx
(1.43)

=
∂u

∂x
+ i

∂v

∂x
(1.44)

or to take first the limit hx → 0 and then

f ′(z0) = lim
hy→0

u(x0, y0 + hy)− u(x0, y0) + iv(x0, y0 + hy)− iv(x0, y0)

ihy
(1.45)

= −i∂u
∂y
+

∂v

∂y
. (1.46)

We used here Theorem 1, which allows us to split the limit for u and v. Comparing (1.44)

and (1.46) we find the Cauchy-Riemann equations (conditions) [3,4]

∂u
∂x =

∂v
∂y and ∂u

∂y = − ∂v
∂x . (1.47)

From the above argument it is clear that the Cauchy-Riemann condition is a necessary

condition for the derivative f ′(z0) to exist. The following theorem provides also a sufficient

condition.

Theorem 2: Suppose that for a function f(z) = u(x, y) + iv(x, y) all four partial deriva-

tives of u and v are continuous at the point z0 and in addition satisfy the Cauchy-Riemann

condition, then the derivative f ′(z0) exists.

Proof : We omit this here.

Example: Once more we consider the function in (1.31)

f(z) = z2 = u(x, y) + iv(x, y) = x2 − y2 + i2xy (1.48)

We verify the Cauchy-Riemann condition

∂u

∂x
= 2x =

∂v

∂y
and

∂u

∂y
= −2y = −∂v

∂x
, (1.49)

and therefore

f ′(z) = 2x+ i2y = 2z. (1.50)

— 8 —
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Definition: A function f of a complex variable z is said to be analytic in the domain D

⊂ C if its derivative exists for all z∈ D. A function is said to be analytic in the point z0
if there exists a neighbourhood around z0 in which f is analytic. When D = C the function

is called an entire function.

Theorem 3: The derivative of an analytic function is also an analytic function.

Proof : We omit this here.

1.2.4 Harmonic functions and the Laplace equation

Definition: A function u which satisfies the Laplace [5] equation ∆u = 0 is said to be

a harmonic function. A function v is said to be the conjugate harmonic function of u, if

they are both harmonic functions and satisfy the Cauchy-Riemann equations (1.47).

Corollary 1: The real and imaginary parts of an analytic function are harmonic functions.

Conversely, if the two functions u(x, y) and v(x, y) are harmonic functions then f(z) =

u(x, y) + iv(x, y) is an analytic function.

Proof : We differentiate the Cauchy-Riemann equations with respect to x and y

∂2xu = ∂x∂yv and ∂2yu = −∂x∂yv, (1.51)

respectively. Theorem 3 guarantees that the second derivatives exist. Adding these

two equation yields

∆u = (∂2x + ∂2y)u = 0. (1.52)

Similarly differentiating the Cauchy-Riemann equations with respect to y and x in-

stead gives ∆v = 0. The converse is shown by integration.

Example 1: Once more we consider the function in (1.31)

f(z) = z2 = u(x, y) + iv(x, y) = x2 − y2 + i2xy (1.53)

Clearly u and v are harmonic functions

∆u = ∂2xu+ ∂2yu = ∂x(2x)− ∂y(2y) = 0, (1.54)

∆v = ∂2xv + ∂2yv = ∂x(2y)− ∂y(2x) = 0. (1.55)

Example 2: Consider

f(z) = z3 = (x+ iy)3 = (x3 − 3xy2) + i(3x2y − y3) = u(x, y) + iv(x, y) (1.56)

It is easy to see that u and v are harmonic functions

∆u = ∂2xu+ ∂2yu = ∂x(3x
2 − 3y2) + ∂y(−6xy) = 6x− 6x = 0, (1.57)

∆v = ∂2xv + ∂2yv = ∂x(6xy) + ∂y(6x− 3y2) = 6y − 6y = 0. (1.58)

— 9 —
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Example 3: Given a harmonic function one can use the Cauchy-Riemann equations to

compute its conjugate harmonic function and thereafter construct an analytic function.

For instance taking u(x, y) = coshx cos y it follows

∂u

∂x
= cos y sinhx =

∂v

∂y
⇒ v = sinhx

�
cos ydy = sinhx sin y + sinhxg(x), (1.59)

∂u

∂y
= − sin y coshx = −∂v

∂x
⇒ v = sin y

�
coshxdx = sinhx sin y + sinh yh(y),(1.60)

such that g(x) = h(x) = 0. The conjugate harmonic function is therefore v(x, y) =

sinhx sin y, such f(x, y) = coshx cos y+ i sinhx sin y is an analytic function by corollary 1.

1.3 Mappings and Transformations

In (1.29) we defined how to map a point z0 ∈ C by means of a function f from the z-plane

to the w-plane. Let us now consider some more geometric aspects of this procedure and

see how one can visualize functions of complex variables.

1.3.1 Translations

We start with a simple example and consider the function which translates each point in

the complex plane by a constant amount ∆ = ∆x + i∆y

w = f∆T (z) := z +∆ = (x+∆x) + i(y +∆y). (1.61)

We give this map here the name f∆T , indicating with the subscript T that we perform a

translation and with the superscript ∆ the amount of the shift. We depict the map for

∆ = 0.4 + 0.2i

fT : z 	→ w

fT (z) = z + 0.4 + 0.2i

Notice the two regions are of the same shape, size and orientation.

1.3.2 Rotations

Next we consider a rotation, which is most conveniently handled in polar coordinates.

Consider

w = fz0R (z) := zz0 = reiθr0e
iθ0 = (rr0)e

i(θ+θ0) (1.62)

Again we introduced some new notation fz0R , indicating with the subscript R that we

perform a rotation and with the superscript z0 the amount it. As an example we take

z0 = 2e
iπ/4, i.e. r0 = 2, θ0 = π/4 and depict fR(z) = 2re

i(θ+π/4) as

— 10 —
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We observe two things: Firstly the radius has been scaled by a factor r0 and secondly the

argument has been increased by θ0, with the effect that the region has been rotated. Thus

strictly speaking fz0R (z) as defined in (1.62) is a rotation together with a simultaneous

scaling and is only a "pure rotation" for r0 = 1. Nonetheless, due to its simple form,

usually the general map fz0R (z) is referred to as rotation.

1.3.3 Inversions

Next we consider the inversion map defined as

w = fI(z) :=
1

z
=

1

reiθ
= r−1e−iθ (1.63)

We depict this as

f : z 	→ w

fI(z) = 1/z

We observe that the interior of the unit circle is mapped into the exterior and vice versa.

Let us see what happens when we use Cartesian coordinates instead. Using formula (1.9)

we find

w =
1

z
=

z̄

zz̄
=

x

x2 + y2
− i

y

x2 + y2
= u(x, y) + iv(x, y) (1.64)

and for the inverse function

z =
1

w
=

w̄

ww̄
=

u

u2 + v2
− i

v

u2 + v2
= x(u, v) + iy(u, v). (1.65)

Thus it follows from (1.65) that a horizontal line in the z-plane at y = c = const has to

satisfy

y = − v

u2 + v2
= c (1.66)

and therefore when completing the square this gives

u2 + v2 +
v

c
= 0 ⇐⇒ u2 +

�
v +

1

2c

�2
=

1

(2c)2
. (1.67)
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The last equation in (1.67) represents a circle with radius 1/2c and centre (0,−1/2c) in
the w-plane. Thus horizontal lines in the z-plane are mapped into circles in the w-plane.

We depict this as

f : z 	→ w

fI(z) = 1/z

In fact this is true in general and we can formulate this observation in a more general form:

Lemma 1: The inversion map w = 1/z maps circles and lines always into circles and

lines.

Proof : The equation

a(x2 + y2) + bx+ cy + d = 0 (1.68)

parameterizes any circle or line, for a = 0, in the z-plane (see e.g. MA1607 Geometry

& Vectors). Substituting x, y from (1.65) into (1.68), i.e. x = u/(u2 + v2) and

y = −v/(u2 + v2) gives

a+ bu− cv + d(u2 + v2) = 0. (1.69)

Thus for a = 0 and d �= 0 any line is mapped into a circle, which we already saw for
the special case of a horizontal line. When a �= 0 and d �= 0 circles are mapped into
circles. For a �= 0 and d = 0 circles are mapped into lines. When a = 0 and d = 0

lines are mapped into a lines and when d = 0 circles are mapped into a lines. �

Let us now organize some of these possible mappings by introducing a new concept.

1.3.4 Conformal mappings

Definition: A map which preserves the angles between a pair of two intersecting lines is

called a conformal map.

In fact all previous examples were of this type.

Theorem 4: Any analytic function f(z) defined on some domain D ⊂ C is conformal at
the point z0 ∈ D, if f ′(z0) �= 0.

Proof : Assuming that f is analytic at the point z0 we can write with definition (1.41)

f ′(z0) = lim
∆z→0

f(z0 +∆z)− f(z0)

∆z
= lim
∆z→0

∆w

∆z
�= 0. (1.70)

In polar form this reads

f ′(z0) = r̃0e
iθ̃0 , (1.71)
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where by definition

r̃0 =


f ′(z0)



 and θ̃0 = arg

�
lim
∆z→0

∆w

∆z

�
= lim
∆z→0

�
arg
∆w

∆z

�
. (1.72)

In the last equality we used the fact that the limit lim∆z→0 exists and we can therefore

exchange the operations arg and lim∆z→0. Now we can write ∆w = ∆z∆w/∆z and

therefore

arg∆w = arg∆z + arg
∆w

∆z
. (1.73)

Taking the limit ∆z → 0 the expression arg∆z just becomes the angle θz between

the tangent at z0 and the horizontal on the curve Cz, which is obtained for varying z

and the horizontal. Since ∆z → 0 means that also ∆w → 0, the expression arg∆w

just becomes in this limit the angle θw between the tangent at w0 on the curve Cw

and the horizontal. Therefore, taking the limit of the expression in (1.73) yields

θw = θz + θ̃0. (1.74)

Next we consider two intersecting curves in the z-plane C1z , C
2
z with corresponding

images C1w, C
2
w in the w-plane. According to (1.74) the angles at these curves are

related as

θ1w = θ1z + θ̃0 and θ2w = θ2z + θ̃0, (1.75)

respectively. Notice that θ̃0 as defined in (1.72) just involves some generic distances

and is therefore the same on both curves C1w and C
2
w. The angles between the tangents

are then interpreted as the angles between the curves. Hence the corresponding angles

in the z-plane and w-plane are the same

θ1w − θ2w = θ1z − θ2z, (1.76)

which follows from subtracting the two equations (1.75) from each other. This proves

the theorem.�

1.3.5 The linear fractional transformation and the group Gl(2,C)

Definition: The transformation

w = T (z) = az+b
cz+d for ad− bc �= 0;a, b, c, d ∈ C (1.77)

is called the linear fractional transformation.

Notice that since T ′(z) = (ad − bc)/(d + cz)2 the restriction ad − bc �= 0 takes care
of the restriction in theorem 4 and ensures that T (z) does not become a constant. Also

note that the four complex numbers do not determine the map T (z) uniquely, as we may

rescale these numbers without changing the map. For instance take κ ∈ C

T (z) =
az + b

cz + d
=

a/κz + b/κ

c/κz + d/κ
=

a′z + b′

c′z + d′
, (1.78)

then obviously the numbers a, b, c, d define the same map as a′, b′, c′, d′.

— 13 —
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We already discussed some special cases of this. The translation by ∆ = b simply

corresponds to a = 1, c = 0 and d = 1. The rotation is obtained by b = 0, c = 0 and d = 1.

The inversion map corresponds to a = 0, b = 1, c = 1 and d = 0.

One can show that the set of all linear fractional transformations forms a group, which

is called Gl(2,C) the set of invertible 2 × 2-matrices with complex entries. In general a
groups is defined in the following abstract sense:

Definition: A group (g,◦) is a set of elements equipped with a binary operation ◦, satis-
fying the following:

i) Closure: For any two elements a, b ∈g also a ◦ b ∈g.

ii) Existence of the identity: For all elements a ∈g there exists an elements e ∈g, such
that e ◦ a = a ◦ e = a.

iii) Existence of the inverse: For each elements a ∈g there exists an element a−1 ∈g,
such that a−1 ◦ a = a ◦ a−1 = e.

iv) Associativity: For any three elements a, b, c ∈g the relation (a ◦ b) ◦ c = a ◦ (b ◦ c) is
satisfied.

In order to establish that the linear fractional transformations indeed form a group in the

above specified sense we have to show that:

i) Any succession (composition) of two linear fractional transformation w = (T1 ◦T2)(z) is
again a linear fractional transformation. We compute for this

a1z + b1
c1z + d1

◦ a2z + b2
c2z + d2

=
(a1a2 + b1c2)z + (a1b2 + b1d2)

(c1a2 + d1c2)z + (c1b2 + d1d2)
, (1.79)

which is again a linear fractional transformation of the form (1.77)

T3(z) =
a3z + b3
c3z + d3

, (1.80)

with a3 = a1a2 + b1c2 etc.

ii) The inverse T−1(z) is again a linear fractional transformation. From z = (aw+b)/(cw+

d) we find

T−1(z) =
dz − b

−cz + a
. (1.81)

iii) A unit element exists, i.e. z = T (z).

iv) The composition of three linear fractional transformations is associative, i.e. T1 ◦ (T2 ◦
T3) = (T1 ◦ T2) ◦ T3. We leave this as an exercise.
Instead of thinking about the group as being represented by the above specified maps we

may also represented it by 2× 2-matrices via the following correspondence

T (z)�

�
a b

c d




(1.82)
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Then the composition of two maps just becomes a matrix multiplication

(T1 ◦ T2)(z)�
�
a1 b1
c1 d1


�
a2 b2
c2 d2




which produces the same values for a3, b3, c3 and d3.

We will now establish that lemma 1 can be extended from the inversion map to the entire

linear fractional transformation.

Lemma 2: The linear fractional transformation w = T (z) maps circles and lines always

into circles and lines.

Proof : For c = 0 the linear fractional transformation T (z) can be written as successive

rotation and a translation

T c=0(z) =
a

d
z +

b

d
= f

b/d
T ◦ fa/dR (z), (1.83)

which has the stated properties. Taking now c �= 0 we can write

T c�=0(z) =
az + b

c(z + d/c)
=

a(z + d/c)− ad/c+ b

c(z + d/c)
=

a

c
+

b− ad/c

cz + d
(1.84)

= f
a/c
T ◦ f (bc−ad)/cR ◦ fI ◦ fdT ◦ fcR(z). (1.85)

This proves the lemma, as it was shown above that all these individual transforma-

tions map circles and lines into circles and lines.�

Alternatively we could have started with the parameterization (1.68) as in the proof for

lemma 1 and subsequently used the linear fractional transformation to verify that the

resulting equation is of similar type. (exercise)

Theorem 5: The linear fractional transformation w = T (z) maps three distinct points

z1, z2, z3 uniquely into three distinct points w1, w2, w3. The map is determined by the

equation
(w−w1)(w2 −w3)

(w−w3)(w2 −w1)
=
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
. (1.86)

Proof : First we bring w = T (z) into the form of a bilinear transformation

cwz + dw − az − b = 0, (1.87)

which is linear in z, linear in w and bilinear in wz. (For this reason the linear

fractional transformation is sometimes also called the bilinear transformation.) by

introducing some new abbreviations we re-write (1.87) as

wz + αz + βw + γ = 0, with α = −a

c
, β =

d

c
, γ = −b

c
. (1.88)

Now if wi = T (zi) for i = 1, 2, 3 we can write this set of three equations as

M





α

β

γ




 =





z1 w1 1

z2 w2 1

z3 w3 1










α

β

γ




 = −





w1z1
w2z2
w3z3




 . (1.89)
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When detM �= 0 we can solve this uniquely for α, β, γ as




α

β

γ




 = −M−1





w1z1
w2z2
w3z3




 (1.90)

where we evaluate the inverse of M to

M−1 = − 1

detM






w23 w31 w12
z32 z31 z21

(w3z2 −w2z3) (w1z3 −w3z1) (w2z1 −w1z2)




 , (1.91)

detM = w1z32 +w2z13 +w3z21 = z1w23 + z2w31 + z3w12. (1.92)

We denoted the differences wij := wi−wj and zij := zi−zj for i, j = 1, 2, 3. Therefore
when evaluating (1.90) we obtain

α = (w2w3z23 +w1w2z13 +w1w3z31)/detM, (1.93)

β = (z1w1z32 + z2w2z13 + z3w3z21)/detM, (1.94)

γ = (z1w2w3z32 + z2w1w3z13 + z3w1w2z21)/detM. (1.95)

Substituting the expressions for α, β, γ back into (1.88) yields (1.86), after some

computation that is. Clearly when detM �= 0 the solution for α, β, γ is unique and
therefore also the map T (z).

What is left, is to see what happens in the case detM = 0. For this situation we

write (1.92) in three different versions

w23z1 + z32w1 +w3z2 −w2z3 = 0, (1.96)

w31z2 + z13w2 +w1z3 −w3z1 = 0, (1.97)

w12z3 + z21w3 +w2z1 −w1z2 = 0, (1.98)

and compare this with (1.87). We can now interpret (1.96) as an equation in z1 and

w1, (1.97) as an equation in z2 and w2 and (1.98) as an equation in z3 and w3. From

the comparison we observe that c = 0 and that a = w32 = w13 = w21, which gives

w2 = w3 − a

w1 = w3 + a

�

⇒ w21 = −2a �= a for a �= 0. (1.99)

Hence, for distinct points z1, z2, z3 and w1, w2, w3 there is no solution to detM = 0.

The only solution was the unique one we computed above and the theorem is therefore

proven.�

Example 1: Determine the linear fractional transformation w = T (z), which maps the

points z1 = i, z2 = 2, z3 = −i uniquely onto w1 = −1, w2 = 0, w3 = 1.
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Solution : We substitute these points into (1.86)

(w + 1)(0− 1)
(w − 1)(0 + 1) =

(z − i)(2 + i)

(z + i)(2− i)
, (1.100)

and solve the resulting equation for w. It is useful to introduce a few auxiliary

quantities to facilitate these type of computations. For instance, for (1.100) we have

−w+ 1

w− 1 =
2z + iz − 2i+ 1
2z − iz + 2i+ 1

=
2z + 1+ i(z − 2)
2z + 1− i(z − 2) =

p

q
= P, (1.101)

where we intruduced the quantities p := 2z+1+ i(z− 2), q := 2z+1− i(z − 2) and
P = p/q. We then find from (1.101)

w + 1 = P −wP, (1.102)

such that

w =
P − 1
P + 1

=
p/q − 1
p/q + 1

=
p− q

p+ q
. (1.103)

Therefore

w = T (z) =
iz − 2i
2z + 1

. (1.104)

As pointed out above (1.78) the answer is not unique as we can multiply the nominator

and denominator by any complex number κ �= 0. It is also useful to verify quickly
that no mistake has been made in the algebra by checking that the points z1, z2, z3 are

indeed mapped onto w1, w2, w3. For instance we compute T (z1) = (−1−2i)/(2i+1) =
−1 = w1.

Example 2: Determine the linear fractional transformation w = T (z), which maps the

points z1 →∞, z2 = i, z3 = 0 uniquely onto w1 = 2, w2 = i, w3 →∞.

Solution : When infinity is involved in either of the points carry out first that limit in

(1.86) on the left and right hand sides where infinity occurs. For the case at hand we

have to compute the limit on both sides of the equation (1.86)

lim
w3→∞

(w −w1)(w2 −w3)

(w −w3)(w2 −w1)
=
(w−w1)

(w2 −w1)
lim

w3→∞

(w2 −w3)

(w −w3)
(1.105)

=
(w−w1)

(w2 −w1)
lim

w3→∞

d
dw3
(w2 −w3)

d
dw3
(w−w3)

=
w −w1
w2 −w1

(1.106)

= lim
z1→∞

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
=

z2 − z3
z − z3

. (1.107)

We used L’Haospitals rule in (1.106). Subsequently we substitute the remaining

points into (1.107)
(w − 2)
(i− 2) =

(i− 0)
(z − 0) . (1.108)

Solve then for w

w = T (z) =
2z − (1 + 2i)

z
. (1.109)
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In the previous example we have added "the point" at infinity in order to achieve a

proper one-to-one mapping. This has a name:

Definition: The extended complex plane C∗ is the complex plane plus infinity, i.e. one

denotes C∗ :=C ∪ {∞}.
Definition: The cross ratio ( z1, z2, z3, z4) is the image of z4 which maps the points

(z1, z2,z3) onto (0,1,∞)
Tc(z4) =

(z4 − z1)(z2 − z3)

(z4 − z3)(z2 − z1)
. (1.110)

The expression (1.110) follows from (1.86).

Theorem 6: The cross ratio ( z1, z2, z3, z4) is real, i.e.

argTc(z4) = arg
(z4 − z1)

(z4 − z3)
− arg (z2 − z1)

(z2 − z3)
= 0 or π, (1.111)

if and only if the four points z1, z2, z3, z4 lie on a line or a circle.

Proof : When Tc(z4) ∈ R the entire image of the points (z1, z2, z3, z4) is on the real axis.
Therefore we know from lemma 2 that (z1, z2, z3, z4) must have been on a line or

circle. When Tc(z4) /∈ R the image of the points (z1, z2, z3, z4) is not a line and

certainly not a circle. Therefore we know from lemma 2 that (z1, z2, z3, z4) can not

have been on a line or a circle.�

Example 3: Compute the cross ratio (2,−2, 2i, z4) and use theorem 6 to decide whether

the points ẑ1/2 = 1± i
√
3 and ẑ3/4 = 2± i lie on the circle |z| = 2.

Solution : The cross ratio is computed to

Tc(z4) =
(z4 − 2)(−2− 2i)
(z4 − 2i)(−2− 2)

=
(z4 − 2)(1 + i)

2(z4 − 2i)
. (1.112)

We then evaluate

Tc(1 + i
√
3) = −1

2
(1 +

√
3) ∈ R, Tc(1− i

√
3) = (1 +

√
3)−1 ∈ R, (1.113)

Tc(2 + i) =
1

10
(i− 3) /∈ R, Tc(2− i) =

1

26
(i+ 5) /∈ R. (1.114)

We conclude that the points ẑ1/2 are situated on the circle |z| = 2, whereas the

points ẑ3/4 are not. Of course we can reach the same conclusion by representing these

numbers in the polar form (1.20). Then it follows immediately, with |z| =
�
x2 + y2

for z = x+ iy, that.


ẑ1/2


 = 2 and



ẑ3/4


 =

√
5.

Example 4: Determine the image of the unit circle |z| = 1, which is mapped by

w = f(z) = (2− i)− 2iz (1.115)

into the w-plane.
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Solution : From theorem 5 we know that the map is uniquely determined by mapping

three distinct points. Let us take the points z1 = 1, z2 = −1, z3 = i and compute

their images

w1 = 2− 3i, w2 = 2 + i, w3 = 4− i. (1.116)

Assume first that the image is a line, i.e. of the form v = αu+ c. These three points

can not lie on a line, which can be argued as follows. The line through w1 and w2 is

obviously a vertical line at x = 2, but since Rew3 = 4 it can not be located at the

same line. Since the image is not a line it follows by lemma 2 that is has to be a

circle. Any circle can be parameterized by

(u− u0)
2 + (v − v0)

2 = r2. (1.117)

Substituting the three points wi for i = 1, 2, 3 into (1.117) gives

w1 : (2− u0)
2 + (3 + v0)

2 = r2, (1.118)

w2 : (2− u0)
2 + (1− v0)

2 = r2, (1.119)

w3 : (4− u0)
2 + (1 + v0)

2 = r2. (1.120)

Thus we have three equation for the three unknown u0, v0, r. Let us solve these

equations

(1.119)− (1.118) : (1− v0)2 − (3 + v0)2 = 0⇔−8− 8v0 = 0⇒ v0 = −1
(1.119)− (1.120) : (2− u0)

2 − (4− u0)
2 + 4 = 0⇔ 4u0 − 8 = 0⇒ u0 = 2

�

⇒ r = 2.

This means the image of the unit circle is a circle centered at (2,−1) of radius 2

(u− 2)2 + (v + 1)2 = 4. (1.121)

In fact noting that f(z) can be decomposed as f(z) = f2−iT ◦ f−2iR (z) this conclusion

can be drawn more directly. From this follows that f−2iR multiplies the radius by a

factor 2 and f2−iT will move the centre from (0, 0) to (2,−1).

1.4 Branch points, branch cuts and Riemann surfaces

We already saw in section 1.2.1. that functions can be multi-valued. We will now see how

we can make them single valued and analytic. Our prime example will be the logarithmic

function, from which the behaviour of many other functions can be derived.

1.4.1 The logarithmic function

We have already encountered, see (1.34), the multi-valued function

fn(z) = ln z = ln(re
iθ) = ln r + iθ + 2πin with n ∈ Z. (1.122)

In order to make this function single valued we could simple choose one value of n, for

instance n = 0 and consider the function

F (z) = f0(z) = ln r + iθ for r ∈ R+,−π < θ ≤ π. (1.123)
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We have made our function single valued, but we

θ = -π

θ = π

z-plane

Figure 5: The discontinuity of lnz.

still have the problem that the function is not analytic,

since it is not continuous when we cross the negative

real axis. Crossing from the upper half to the lower half

z-plane the θ-value jumps from π to −π, i.e. taking the
value θ = π we find the value θ = −π in any small neigh-
bourhood around a point on the negative real axis. This

means the derivatives of this function do not exist on the

negative real axis. We may remedy this by cutting out

a ray from the domain and define instead of (1.123) the

function

f θ̃0 (z) = ln z = ln r + iθ for r ∈ R+, θ̃ < θ < θ̃ + 2π. (1.124)

Now this function is single valued and continuous
z

θ ~
θ

cut z-plane

Figure 6: The z-plane with a cut.

in the entire complex plane from which the ray at θ = θ̃

has been taken away. To verify that the function is in-

deed analytic, let us check whether the Cauchy-Riemann

conditions hold and if the partial derivatives are contin-

uous, (see theorem 2). Let us first re-write the Cauchy-

Riemann conditions (1.47) in polar coordinates. From

(1.19) we find

∂u
∂x =

∂u
∂r

∂r
∂x =

∂u
∂r

1
cos θ

∂v
∂y =

∂v
∂θ

∂θ
∂y =

∂v
∂θ

1
r cos θ

�

⇒ ∂u
∂r =

1
r
∂v
∂θ , (1.125)

and
∂u
∂y =

∂u
∂θ

∂θ
∂y =

∂u
∂θ

1
r cos θ

− ∂v
∂x = −∂v

∂r
∂r
∂x = −∂v

∂r
1

cos θ

�

⇒ 1
r
∂u
∂θ = −∂v

∂r . (1.126)

Now we apply (1.125) and (1.126) to the function f θ̃0 (z) in (1.124), i.e. for u(r, θ) = ln r

and v(r, θ) = θ. We compute

∂u

∂r
=
1

r
=
1

r

∂v

∂θ
and

1

r

∂u

∂θ
= 0 = −∂v

∂r
(1.127)

for all r ∈ R+, θ̃ < θ < θ̃ + 2π. Thus the Cauchy-Riemann conditions are indeed satisfied

and since all partial derivatives are continuous the function f θ̃0 (z) is an analytic function

by theorem 2. Note that this would not be the case without the cut.

We make these notions a bit more formal:

Definition: A branch F(z) of a multi-valued function f(z) is any single valued function,

which is analytic in some domain D ⊂ C, where F(z0) =f(z0) for all z0 ∈ D.

Definition: A branch cut is a curve in the complex plane across which an analytic mul-

tivalued function is discontinuous.

Definition: A point which is shared by all branches of the function is called a branch point.

Definition: The principal branch F p(z) of the logarithmic function is defined as
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F p(z)=f−π0 (z) = ln z = ln r + iθ for r ∈ R+,−π < θ < π. (1.128)

The principal branch of other functions are those corresponding to the principle branch of

the logarithmic function.

Note that for many functions f θ̃n(z) we can identify a possible branch for the logarithmic

function. The point z = 0 is common to all branches and therefore this is the branch point

of the logarithmic function.

1.4.2 Riemann surfaces

Branch cuts are one way to han-

from Rn-1

to Rn+1
z

0

Rn

to R2

to R3

from R0

from R1

R2

R1

z
0

z
0

Figure 7: Riemann surface for lnz.

dle discontinuities of multivalued func-

tions in the complex plane. However,

for some applications one does not wish

to restrict the values of θ. An alterna-

tive method which avoids this limitation

is to use Riemann surfaces.

Definition: A Riemann surface is

a surface-like configuration that covers

the complex plane with several, often in-

finitely many, "sheets." Functions de-

fined on Riemann surfaces can be made

single valued and continuous for the en-

tire range of θ.

Let us now see how to construct

such surfaces for the example for the logarithmic function.

• We consider the z-plane and cut it along a branch cut on the positive real axis, such
that θ is allowed to take the values 0 ≤ θ < 2π. We denote this plane as R1.

• Next we cut another z-plane in the same way and denote it as R2. We place this
sheet on top of R1 and identify the lower edge of the cut in R1 with the upper edge
of the cut in R2. In this second Riemann sheet θ takes on the values 2π ≤ θ < 4π.

• We proceed further in the same way and identify next the lower edge of the cut in
R2 with the upper edge of the cut in the new sheet R3 which is placed on top of R2.
In this third Riemann sheet θ takes on the values 4π ≤ θ < 6π.

• One may continue this procedure up to infinity. We can also allow negative values

for θ by continuing in the other direction, i.e. we identify the upper edge in the cut

of R1 with lower edge of a branch cut in a plane R0 which is placed below R1 and
in which θ can now take on the values −2π ≤ θ < 0.

• Preceding this way we can achieve that θ ∈ R without any restriction.
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This means we have the Riemann sheets

R1 = {r, θ : r ∈ R+, 0 ≤ θ < 2π}, (1.129)

R2 = {r, θ : r ∈ R+, 2π ≤ θ < 4π}, (1.130)
...

Rn = {r, θ : r ∈ R+, 2(n− 1)π ≤ θ < 2nπ} for n ∈ Z. (1.131)

The logarithm is now a single valued and continuous function on the Riemann surface

D =
∞�

n=−∞

Rn. (1.132)

Therefore in this way of looking at the problem the logarithm becomes an analytic

function everywhere except at the origin.

1.4.3 Roots and other irrational functions

We may now understand the behaviour of other multivalued functions by employing the

knowledge we have accumulated by studying the logarithmic function.

For instance we can now handle functions of the type z1/n with n ∈ Z.

The function
√
z We consider first the square root function. Initially we assume that

we could have infinitely many branches just like for the logarithmic function

fn(z) =
√
z = exp

�
1

2
ln z

�
= exp

�
1

2
(ln r + iθ + 2πin)

�
=
√
rei

θ+n2π
2 . (1.133)

However, there are only two branches

fi(z) = z1/2

v

u

y

x

D0
w

D1
w

r
0 r

0
1/2

D
z

Figure 8: Different branches of the square root.

which differ from each other, namely

f0(z) and f1(z). Note that for other

values of n we do not produce new func-

tions, as for instance f2(z) = f0(z), f3(z) =

f1(z), etc. According to (1.128) it is

clear that the principle branch of this

function, which corresponds to the one

of the logarithmic function is

F p(z)=f0(z) =
√
reiθ/2 (1.134)

for r ∈ R+,−π < θ < π. Let us see how certain regions in the z-plane are mapped to the

w-palne. For instance, if we restrict the values of r and take the sliced disk of radius r0

Dz = {r, θ : r < r0, − π < θ < π}, (1.135)

the principle branch of the square root f0(z) maps this sliced disk onto the half disk of

radius
√
r0 in the right half plane

D0
w = {r, θ : r <

√
r0, −

π

2
< θ <

π

2
}. (1.136)
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We can check a few values on the boundary: f0(i) = eiπ5/4, f0(1) = eiπ, f0(−i) = eiπ3/4,

f0(e
iπ/6) = eiπ13/12.

Taking instead the other branch f1(z), we observe that it maps Dz onto the half disk

of radius
√
r0 in the left half plane

D1
w = {r, θ : r <

√
r0,

π

2
< θ <

3π

2
}. (1.137)

We can check a few values on the boundary: f1(i) = eiπ/4, f1(1) = 1, f1(−i) = e−iπ/4,

f1(e
iπ/6) = eiπ/12.

Having determined the branch cuts we can also construct the Riemann surface, which

consists in this case of two sheets. For instance we can turn f(z) =
√
z into a single valued

analytic function when we define it on

D = R1 ∪R2 (1.138)

with

R1 = {r, θ : r ∈ R+, 4πn ≤ θ < 4πn+ 2π, n ∈ Z}, (1.139)

R2 = {r, θ : r ∈ R+, 4πn+ 2π ≤ θ < 4π(n+ 1), n ∈ Z}. (1.140)

Notice that unlike as for the logarith-

6

5

4

3

2

1

to R2

to R1

from R
2

from R1

R
2

R
1

z
0

z
0

Figure 9: Riemann surface for f(z) = z1/2.

mic function in this case we can always

return to the other sheet as the value

of
√
z is the same when we have passed

along the two sheets, i.e. when we have

increased θ by 4π. To see this more ex-

plicitly see figure 9. Following the num-

bers from 1 to 6 to return to the start-

ing point in the first sheet you have in-

creased the value of θ by 4π.

The function z1/3 Next we consider

fn(z) = z1/3 = exp

�
1

3
ln z

�
= exp

�
1

3
(ln r + iθ + 2πin)

�
= r1/3ei

θ+n2π
3 . (1.141)

Now there are three possible branches f0(z), f1(z) and f2(z). Again we use the logarithmic

function to identify the principle branch as

F p(z)=f0(z) = r1/3eiθ/3 = exp

�
1

3
ln z

�
for r ∈ R+,−π < θ < π. (1.142)

Thus the complex plane which is slit open along the negative real axis

Dz = {r, θ : r ∈ R+, − π < θ < π} (1.143)

is mapped by the principle branch f0(z) onto the wedge region

D0
w = {r, θ : r ∈ R+, −

π

3
< θ <

π

3
}, (1.144)
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whereas the branches f1(z) and f2(z) map Dz onto the wedges

D1
w = {r, θ : r ∈ R+,

π

3
< θ < π}, (1.145)

D2
w = {r, θ : r ∈ R+, π < θ <

5

3
π}, (1.146)

respectively.

The Riemann surface consists in this case of three sheets. For instance we can turn

f(z) = z1/3 into a single valued analytic function when we define it on

D = R1 ∪R2 ∪R3 (1.147)

with

R1 = {r, θ : r ∈ R+, 6πn ≤ θ < 6πn+ 2π, n ∈ Z}, (1.148)

R2 = {r, θ : r ∈ R+, 6πn+ 2π ≤ θ < 6πn+ 4π, n ∈ Z}, (1.149)

R3 = {r, θ : r ∈ R+, 6πn+ 4π ≤ θ < 6π(n+ 1), n ∈ Z}. (1.150)

Having seen how to construct the surface for the square root function you may easily draw

this surface yourself. (Exercise!)

Let us consider some more explicit cases:

Example 1:

DzDz

x

y

x

z0

y
zz

z0

~

Figure 10: Two choices for branch cuts.

Find at least two different choices of

branch cuts for the function

f(z) = (z − z0)
1/2 (1.151)

such that it becomes single valued and

analytic. Determine the branch point

and describe the corresponding Riemann

surfaces.

Solution : We can write

f(z) = (z − z0)
1/2 =

√
r̃ exp(iθ̃/2) (1.152)

and define it on

Dz = {r̃, θ̃ : r̃ ∈ R+, 0 < θ̃ < 2π}, (1.153)

such that the branch cut extends from the branch point z0 horizontally to plus infinity.

As we already said, this is only a matter of convention and we could also define the

function on a different domain, such as

D̃z = {r̃, θ̃ : r̃ ∈ R+, − π < θ̃ < π}, (1.154)

achieving just the same effect. In figure 10 the different types of domains of analyticity

are depicted. The Riemann surface is just the same as the one for
√
z with the

difference that the origin has been shifted to z0. The point z0 is shared by all

branches and therefore the branch point.
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Example 2: Determine the branch cuts needed to make the function

f(z) = (z2 − 1)1/2 (1.155)

single valued and analytic.

Solution : We can write

f(z) = (z + 1)1/2(z − 1)1/2 = √r1 exp(iθ1/2)
√
r2 exp(iθ2/2) = f1(r1, θ1)f2(r2, θ2)(1.156)

=
√
r1r2 exp [i(θ1 + θ2)/2] (1.157)

and thus at first we can make the functions f1, f2, which only depend separately on

(r1, θ1) or on (r2, θ2), individually single valued and analytic.

• In order to make the function single valuedness we have already selected a par-
ticular branch in (1.157).

• To achieve analyticity we define the functions for instance both on Dz as defined

in (1.153), by replacing (r̃, θ̃) → (r1, θ1) and (r̃, θ̃) → (r2, θ2), respectively.

Hence we have two branch cuts which extend from the branch points z = −1
and z = 1 horizontally to plus infinity. Notice that this is convention and other

choices would have been possible, such as the principle branch cuts.

• Next we have to settle the question of how several branch cuts effect each other.
Let us look at different regions on the real axis.

• The part z ∈ (−∞,−1) poses no problem as f1 as well as f2 are smooth when

crossing this line.

• Next we consider the line segment z ∈ [−1, 1]. Here the function f2 is continuous,
but f1 is not and therefore we have to cut out this line segment.

• Next we consider the part z ∈ (1,∞). Above the axis we have θ1 = θ2 = 0,

such that θ1 + θ2 = 0 and therefore f(z) =
√
r1r2. Below the axis we have

θ1 = θ2 = 2π, such that θ1 + θ2 = 4π and we therefore also have f(z) =
√
r1r2.

This means the function also crosses this part of the axis in a smooth way,

despite the fact that the individual functions f1, f2 would have branch cuts in

that regime.

Overall this means if we take out the line segment z ∈ [−1, 1] the function f(z)

becomes single valued and analytic. We could have also started out by defining the

functions f1, f2 on other domains than Dz and we would have ended up with a

different type of cut or possibly cuts. (For a more detailed discussion of this issue see

exercise sheet 3.)

1.5 The Riemann mapping theorem
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So far we have mainly concentrated

D2

f2 (z)

z2- plane

-i

i

1-1

v2

u2

w2- plane

-i

i

1-1

v1

u1

f1 (z)

w1- planez1- plane

D1

Figure 11: The Riemann mapping theorem

on the question of how certain geomet-

ric configurations (boundaries of regions)

transform when mapped by analytic func-

tions. Next we want to address the ques-

tion of how entire regions are mapped

by conformal transformations. This sort

of problem is characterized by the Rie-

mann mapping theorem:

Theorem 7: (Riemann mapping the-

orem) Given a simply connected region

D ⊂ C (i.e. D has no holes) which is

not the entire plane and a point z0 ∈ D. Then there exists an analytic function f : z 	→ w

which maps D one-to-one onto the interior of the unit disk |w| < 1. The uniqueness of the
map can be achieved with the normalization condition f(z0) = 0 and f ′(z0) > 0.

Proof : omitted here but may be found

D1

z- plane

D2

f(z) = f 2
-1 o f 1 (z)

w- plane

Figure 12: Consequence of theorem 7

for instance in L.V. Ahlfors, Complex

analysis, MacGraw-Hill, New York, 1979.

An immediate consequence of this

theorem is the remarkable fact that any

two simply connected regions D1 and

D2 (with the exception that they can

not be the entire plane) can be mapped

into each other in a one-to-one fashion

by a conformal map. From theorem 7

follows that there exist two analytic func-

tions f1, f2 which map the simply connected regions D1,D2 in a one-to-one fashion to the

interior of the unit disk, respectively. See figure 11. Therefore provided the inverse map of

f2 exists we can map directly D1 	→ D2 by

f(z) = f−12 ◦ f1(z). (1.158)

The two regions D1 and D2 are said to be conformally equivalent.

Example 1: Find an analytic function which maps the upper half of the complex plane

Im z > 0 onto the interior of the unit disk |w| < 1.

Solution : First we note that the boundaries of the two regions have to be mapped onto

each other and therefore the image of the part Im z > 0 has to be in the interior of

the unit circle. We take distinct point on the boundary, the real axis in this case,

and demand that they are mapped onto the circle |w| = 1

z1 = −1, z2 = 0, z3 = 1 	→ w1 = i, w2 = −1, w3 = −i. (1.159)
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Let us assume this map is a linear fractional transformation, then it follows from

(1.86) that
(w− i)(−1 + i)

(w+ i)(−1− i)
=
(z + 1)(0− 1)
(z − 1)(0 + 1) (1.160)

and therefore upon solving this for w we find

w = f(z) =
z − i

z + i
. (1.161)

Let us check the uniqueness. We can take z0 = i and therefore

f(i) = 0 and f ′(z0 = i) =
2i

(z0 + i)2






z0=i

= − i

2
. (1.162)

w
3

w
2

w
1

z
3z

2
z

1
0-1 1

z + i
z - i

x

y

-i

i

1-1

v

u

f(z) =

w- planez- plane

Figure 13: Upper half plane mapped to the unit disk.

The derivative does not quite satisfy the normalization condition specified in the

theorem, but with simple rotation we achieve our aim. The function f̃(z) = if(z)

satisfies the requirements and therefore maps the upper half plane uniquely onto the

unit disk. Clearly f(z) is also a unique map, albeit with a different normalization

condition.

See exercise sheet 3 for more examples.

1.5.1 The Schwarz-Christoffel transformation

We have seen that the linear fractional transformation can be used to map all kinds of

exotic regions into each other. Let us see next what kind of images we obtain when we

map with non-linear functions, which can even be non-analytic functions in some points.

An important example for these type of maps is the Schwarz-Christoffel transformation,

which maps the upper half plane onto an n-sided polygon.
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In order to see how this works in detail let us recall formula (1.73), which gives a

relation between the unit-tangent vector tz at the point z0 on the curve Cz and the unit-

tangent vector tw at the image point w0 = f(z0) on the curve Cw

arg tw = arg tz + arg f
′(z0). (1.163)

Taking now the curve Cz to run along the real axis in increasing x-direction, we have

arg tz = 0 and therefore

arg tw = arg f
′(z0). (1.164)

Next we distribute n− 1 points on the real axis at the positions xi with 1 ≤ i ≤ n− 1 in
strictly increasing order, that is x1 < x2 < . . . < xn−1. We suppose that these points are

mapped to wi = f(xi) for 1 ≤ i ≤ n− 1. We introduce an additional point, which is the
image of infinity limx→±∞ f(x) = wn. We make now the crucial assumption on the form

of the derivative of the function f(z)

f ′(z) = c
n−1�

i=1

(z − xi)
−µi c ∈ C,−1 < µi < 1. (1.165)

Taking the argument of this equation then yields

arg f ′(z) = arg c−
n−1�

i=1

µi arg(z − xi). (1.166)

When z is taken on the x-axis arg(x− xi) is a stepfunction

arg(x− xi) =

�
π for x < xi
0 for x > xi

. (1.167)

This means when we increase x and pass by the point xi the derivative f ′(z) will change

by the amount µiπ. We now interpret the points wi for 1 ≤ i ≤ n as vertices of a polygon

and the values µiπ as exterior angles at the i-th vertex. The latter interpretation is the

explanation for the restriction on the constants µi mentioned already in (1.165). Obviously

the sum of all exterior angles has to be 2π, which gives the further restriction

2π =
n�

i=1

µiπ ⇒ 2 =
n�

i=1

µi. (1.168)

We can now understand the next theorem, which goes beyond our previous observations

and also ensures under which condition such transformation exist.

Theorem 8: (Schwarz-Christoffel theorem) Given an n-sided polygon with vertices wi and

exterior angles θi = µiπ for 1 ≤ i ≤ n. Then there exist always n real numbers xi for

1 ≤ i ≤ n together with a complex constant c ∈ C and an analytic function f : z 	→ w

whose derivative is given by

f ′(z) = c
n−1�

i=1

(z − xi)
−µi c ∈ C,−1 < µi < 1, (1.169)
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which maps the upper half plane one-to-one onto the interior of the polygon. The points

are mapped as wi = f(xi) for 1 ≤ i ≤ n− 1 and wn = limx→±∞ f(x).

Proof : omitted here, but see before the theorem for justification and plausibility

Let us see how to apply this theorem.

Example 1: Determine the Schwarz-Christoffel transformation, which maps the upper

half plane to an equilateral triangle. Map the points x1 = 1 and x2 = −1 to w1 = 0 and

w2 = a. Express your result in terms of the quantity

α =

� 1

−1
dẑ

1

(1− ẑ2)2/3
=
√
π
Γ(1/3)

Γ(5/6)
≈ 4.20655, (1.170)

where Γ denotes the Gamma function1.

Solution : The exterior angles θi with i = 1, 2, 3 for an equilateral triangle are obviously

θi = 2π/3. We can therefore express the derivative (1.169) as

f ′(z) = c
2�

i=1

(z − xi)
−2/3. (1.171)

Let us take next the points xi to be x1 = 1 and x2 = −1, such that

f ′(z) = c(z − 1)−2/3(z + 1)−2/3. (1.172)

Integration (1.169) then yields

f(z) = c

z�

1

dẑ(ẑ − 1)−2/3(ẑ + 1)−2/3 + c̃, (1.173)

with c̃ ∈ C some integration constant. Let us now fix the constants c and c̃ by

substituting the values for all vertices. We have taken here the lower limit to be 1 as

this yields simply

f(1) = c̃ = w1 = 0. (1.174)

Furthermore we have

f(−1) = c

� −1

1
dẑ(ẑ − 1)−2/3(ẑ + 1)−2/3 = w2, (1.175)

lim
z→−∞

f(z) = c

� −∞

1
dẑ(ẑ − 1)−2/3(ẑ + 1)−2/3 = w3, (1.176)

lim
z→∞

f(z) = c

� ∞

1
dẑ(ẑ − 1)−2/3(ẑ + 1)−2/3 = w3. (1.177)

1The Gamma function can be viewed as a generalization of n! to non-integer values

Γ(z) := lim
n→∞

1 · 2 · 3 . . . n

z(z + 1)(z + 2) . . . (z + n)
nz =

�
∞

0

dte−txx−1 z �= Z−0 .

Note that Γ(n+ 1) = n! for n ∈ Z.
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These integrals are quite horrible to solve as they will give hypergeometric functions.

However, we do not have to do this since we have more equations than constants left

and can express all quantities in terms of the given integral (1.170). Let us take first

the equation (1.175)

f(−1) = c

� −1

1
dẑ(ẑ − 1)−2/3(ẑ + 1)−2/3 = c

� −1

1
dẑe−iπ2/3

1

(1− ẑ2)2/3
(1.178)

= ceiπ/3
� 1

−1
dẑ

1

(1− ẑ2)2/3
= ceiπ/3α = w2 = a. (1.179)

In (1.178) we have simply taken out a factor −1 from the bracket (ẑ − 1)−2/3 =
(−1)−2/3(1− ẑ)−2/3 with (−1)−2/3 = e−iπ2/3. In the step (1.178) to (1.179) we used� b

a
dx = −

� a

b
dx with −1 = eiπ. Therefore the constant c is fixed to

c = e−iπ/3a/α. (1.180)

Next have to verify that the thirs point lies indeed on the other vertex of the triangle.

We therefore evaluate (1.176)

w3 = c

� −1

1
dẑ(ẑ − 1)−2/3(ẑ + 1)−2/3 + c

� −∞

−1
dẑ(ẑ − 1)−2/3(ẑ + 1)−2/3 (1.181)

= w2 + ce−iπ4/3
� −∞

−1
dẑ |ẑ − 1|−2/3 |ẑ + 1|−2/3 (1.182)

= w2 + ce−iπ/3
� ∞

1
dẑ |ẑ + 1|−2/3 |ẑ − 1|−2/3 (1.183)

= w2 + e−iπ/3w3 = a+ e−iπ/3w3. (1.184)

In the step from (1.181) to (1.182) we used the fact for the range of the integral

ẑ − 1 ≤ 0 and ẑ + 1 ≤ 0. Introducing the modulus means that we have to take
out a minus sign from each factor, i.e. (−1)−2/3(−1)−2/3 = e−iπ4/3. In the step

from (1.182) to (1.183) we change the integration variable from ẑ → −ẑ, leaving the
integrant invariant but producing an overall minus sign such that −e−iπ4/3 = e−iπ/3.

In (1.184) we can then drop the modulus and use (1.177) to replace the integral.

Solving this for w3 gives

w3 =
a

1− e−iπ/3
=

ae−iπ/3

e−i
π
3 − e−i

2π
3

=
ae−iπ/3

e−i
π
3 + ei

π
3

=
ae−iπ/3

2 cosπ/3
= e−iπ/3a. (1.185)

Thus we obtain indeed an equilateral triangle with vertices w1 = 0, w2 = a and

w3 = e−iπ/3a.

2. Boundary value problems

We will now see how the material we have learned in the previous section, in particular

conformal maps, can be applied in some concrete problems in physics (electrostatic, motion
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of incompressible fluids, gravity, string theory, . . . ), biology, chemistry, finance etc. One

of the most common and oldest problems are boundary value problems. In general, in a

boundary problem one is given some information about some unknown function f in some

domain D (usually a differential equation) and in addition some information about the

function on the boundary ∂D. In case the information at the boundary are

i) the values of the function on the boundary, one speaks of a Dirichlet problem

ii) the derivatives of the function one speaks of a Neumann problem.

Of course these conditions can also be mixed,

 = cn 
f f( D) = c

D

D

f(z) = 0

Figure 14: Boundary value problem.

such that part of the information consists of the val-

ues at the boundary and part of the information con-

sists of the information about the derivatives at the

boundary. However, we shall see below that some

manipulations are only meaningful when the bound-

ary conditions are either of pure Dirichlet or pure

Neumann type. See figure 14.

The main solution techniques for boundary value

problems are:

i) The use a conformal transformation to map the problem onto an easier domain for which

one can solve it.

ii) The use the Poisson integral formula.

In i) we have more the set up of a strategy rather than a concrete solution technique.

With regard to the previous section we will study here mainly the cases i).

2.1 Potential theory (generalities)

In many cases the information about the function ψ in D is the Laplace equation

∆ψ = ∂2xψ + ∂2yψ = 0 (2.1)

and one calls this kind of scenario potential theory. This means for this situation we will seek

some harmonic function with given boundary condition, either of Neumann or Dirichlet

type. If we want to follow the strategy outlined above and use conformal transformations,

we have to ensure first that our original problem is not altered by such manipulations.

Indeed this can be guaranteed by the following theorems.

Theorem 9: A harmonic function ψ(x, y) transforms into a harmonic function ψ(u, v)

when changing variables as z = x+iy = f(w) = f(u+iv) with f being an analytic function.

Proof : Take ψ(x, y) to be a harmonic function and z = f(w) to be an analytic function.

⇒ ∃ a conjugate function ψ̃(x, y) (see section 1.2.4)

— 31 —



MA3603 , Andreas Fring, Mathematical Methods II

⇒ The newly defined function φ(x, y) = ψ(x, y) + iψ̃(x, y) is an analytic function of

z, which follows by Corollary 1.

⇒ φ(z) = φ(f(w)) is an analytic function of w, since an analytic function of an

analytic function is an analytic function.

⇒ ψ is a harmonic function of u, v.�

Let us see what this means in a concrete example.

Example 1: In section 1.2.4. we have already encountered the following harmonic function

ψ(x, y) = x2 − y2 ⇒ ∆xyψ = 0. (2.2)

We write here ∆xy to indicate that the derivatives are taken with respect to x, y. Now take

as an analytic function f(w) = eiw, which maps w 	→ z

z = f(w) = eiw = ei(u+iv) = e−veiu (2.3)

= e−v cosu+ ie−v sinu

= x+ iy.

Comparing the real and imaginary part, we can read off from this x(u, v) = e−v cosu and

y(u, v) = e−v sinu and use this to express the function ψ(x, y) in (2.2) as a function in u

and v

ψ(u, v) = e−2v cos2 u− e−2v sin2 u = e−2v cos 2u. (2.4)

Next we verify that ψ is also a harmonic function in u, v

∂2uψ(u, v) = ∂u(−2 sin(2u)e−2v) = −4e−2v cos(2u)

∂2vψ(u, v) = ∂v(−2 cos(2u)e−2v) = 4e−2v cos(2u)

�

⇒ ∆uvψ(u, v) = 0. (2.5)

Having ensured that the harmonic nature of the function inside D does not change when

we apply an analytic function to its argument, we have to see next what happens at the

boundary.

Theorem 10: Given a harmonic function ψ(x, y) which is transformed by a conformal

map z = f(w) with f ′(w) �= 0. The boundary conditions which are either of the Dirichlet

ψ(x, y) = ψ(x(u, v), y(u, v)) = c = const, (2.6)

or Neumann type

dψ

dnx,y
=

dψ

dnu,v
= 0 = ∇x,yψ · �nx,y = ∇u,vψ · �nu,v, (2.7)

remain unchanged. Here �nx,y is a normal vector to the curve Cz parameterized by ψ(x, y)

in the z-plane and �nu,v is a normal vector to the curve Cw parameterized by ψ(u, v) in the

w-plane.
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Proof : The conservation of the Dirichlet boundary conditions is obvious.

Next we consider the Neunmann type. Recall (from calculus 2) that the gradient

vector

∇ψ(x, y) = ∂ψ(x, y)

∂x
+

∂ψ(x, y)

∂y
(2.8)

at a particular point z0 = x0 + iy0 of a function ψ points into the direction in which

the directional derivative of ψ has its maximal value. See figure 15 for a schematic

explanation. The maximum rate of change is |∇ψ|. It is clear that the gradient
is orthogonal to the level curve through z0 at which ψ(x, y) = const. When we

have a vanishing normal derivative dψ/dnx,y = 0 along a curve Cz in the z-plane, it

means that the normal vector �nx,y is orthogonal to the gradient vector ∇x,yψ. This

is because dψ/dnx,y is the projection of the gradient onto the normal vector. We

can now carry out the same analysis at the image curve Cw in the w-plane. Since

conformal transformations preserve angles between curves, it follows directly that we

also have ∇u,vψ · �nu,v = 0.�

This means we can safely follow the

n

 = c

C
w

n
C

z

 = c

w = f(z)

w-planez-plane
v

u

y

x

Figure 15: Neumann boundary condition.

strategy outlined at the beginning, which

consists of first solving the boundary

problem for some easy set up and then

using some conformal transformations

to treat more involved situations. Let

us therefore start by solving two rela-

tively easy boundary problems.

2.2 Electrostatic potential between

two infinite plates

Electrodynamics is governed byMaxwell’s

equations, which were formulated in 1864.

In this course we do not want to concentrate on physics and therefore this will only be

a sketchy introduction. In case you like to read up on the background: The classic book

on the subject is ”J.D. Jackson, Classical Electrodynamics, (Academic Press, New York,

1998, 3rd edition)”.

In electrostatics, that means we do not have any time dependence, one of the Maxwell’s

equations reads

∇ · �E = 0, (2.9)

where �E is the electric field vector, which can be expressed as the negative of the gradient

of a scalar potential φ
�E = −∇φ. (2.10)

When combining these two equations it follows directly that the scalar potential satisfies

the Laplace equation

∇ · ∇φ = ∆φ = 0. (2.11)
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We shall now consider the problem
z

y

x

 = 
1  = 

2

Figure 16: Infinite planes.

of two infinite plates, which are located

in the yz-plane at the positions x = x1
and x = x1, see figure 16. Clearly the

geometry of this problem dictates that

the potential depends only on the x-

direction and must be independent of

y and z. This means if you move along

the y or z direction you do not notice

any difference. The Laplace equation

reduces therefore to

∆φ =
d2φ

dx2
= 0, (2.12)

which is easily solved by

φ(x) = αx+ β α, β = const . (2.13)

Having solved the Laplace equation, we have to invoke the boundary conditions to fix the

constants α, β. For simplicity we place now the plates at the position x = ±1. Therefore
we obtain

φ1 = −α+ β

φ2 = α+ β

�

⇒ β =
1

2
(φ1 + φ2), α =

1

2
(φ2 − φ1) (2.14)

and finally the potential, which respects the given boundary conditions, is

φ(x) =
1

2
(φ2 − φ1)x+

1

2
(φ1 + φ2). (2.15)

Having solved the Laplace equation in one dimension with given boundary conditions, let

us look at a slightly more complicate situation in two dimension.

2.3 Electrostatic potential between two coaxial cylinders

We now want to find the potential function

r = 1

r = r
0

z
y

x

 = 
1

 = 
0

Figure 17: Coaxial cylinders.

for two infinitely long coaxial cylinders with radii

r0, r = 1 at potentials φ0, φ1, respectively, see fig-

ure 17.

In order to incorporate the symmetry of the

problem we consider the Laplace equation in polar

coordinates as defined in (1.19) (recall calculus 2

or see exercise sheet 4)

∆φ =
∂2φ

∂r2
+
1

r2
∂2φ

∂ϑ2
+
1

r

∂φ

∂r
= 0. (2.16)

According to the symmetry of the problem there can not be any ϑ dependence, such the

∂φ/∂ϑ = 0. We may then write (2.16) as

∆φ = 0 ⇔ r
∂2φ

∂r2
+

∂φ

∂r
= 0. (2.17)
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Let us now solve this equation. Denoting first ψ := ∂φ/∂r we can reduce the second order

differential equation (2.17) to a first order differential equation

r
∂ψ

∂r
+ ψ = 0. (2.18)

Separation of variables then yields

�
1

r
dr = −

�
1

ψ
dψ ⇒ ln r = − lnψ + c, (2.19)

with c being some integration constant. Therefore we can write

lnψ = ln
∂φ

∂r
= − ln r + c = ln

κ

r
, (2.20)

when introducing a new constant c = lnκ. Exponentiating both sides and a subsequent

integration yields
∂φ

∂r
=

κ

r
⇒ φ(r) = κ ln r + λ, (2.21)

with λ being a new integration constant. The constants κ, λ have to be determined from

the boundary conditions, which when invoked give

φ1 = κ ln(r = 1) + λ = λ

φ0 = κ ln r0 + λ

�

⇒ κ =
φ0 − φ1
ln r0

. (2.22)

Finally the potential which respects the given boundary conditions is

φ(r) = (φ0 − φ1)
ln r

ln r0
+ φ1. (2.23)

Having solved the Laplace equation in two cases directly we proceed to consider a less

symmetrical geometric configuration and follow the strategy outlined above, namely using

a conformal transformation to map it to one of the previous problems.

2.4 Electrostatic potential between two non-coaxial cylinders

We shall now try to find the potential func-

x
0

r = 1

r = x
0

y

x

 = 
1

 = 
0

Figure 18: Non coaxial cylinders.

tion for the entire z-plane when the two infinitely

long cylinders |z| = 1 and |z − x0| = x0 are non-

coaxial. We understand here that the z-plane is

the xy-plane, which is not to be confused with the

z-direction, i.e. by |z| = 1 we mean x2 + y2 = 1,

etc. We place the cylinders at the constant po-

tentials φ1 = 0 at |z| = 1 and φ0 = 220V at

|z − x0| = x0. We will take the value of the cen-

ter of the smaller cylinder and its radius to be

x0 = 3/10 when it is convenient.
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Solution : In order to make use of the result we found in the previous section, we have

to find a map which leaves the circle with the radius |z| = 1 invariant, that is we
want the image to be |w| = 1. In addition we want to map the circle |z − x0| = x0
to |w| = r0. Let as make an inspired guess and assume this map is of the form of

a linear fractional transformation (1.77). We have seen that we can fix this map by

means of three points. Let us map the three points z1 = 1, z2 = −1, z3 = i on the

unit circle onto the three points on the unit circle in the image plane

w1 = −i, w2 = 1, w3 =
2c

1 + c2
+ i
(c2 − 1)
1 + c2

, c ∈ R. (2.24)

It is slightly less obvious that w3 is on the unit circle, but one can easily check that

indeed (Rew3)
2 + (Imw3)

2 = 1. This choice seems complicated at this stage, but

we have achieved that there is a free parameter in our set of equations. Substituting

these points into (1.86) and solving for w in the usual way we find2

w = f(z) =
z − c

cz − 1 with c ∈ R. (2.25)

We can now exploit the fact that c is a free parameter. Our geometric set up also

dictates that

f(0) = r0 ⇒ c = r0 (2.26)

f(2x0) = −r0 ⇒ 2x0 − r0
2x0r0 − 1

= −r0 (2.27)

Combining these equations yields a quadratic equation in r0

2x0 − r0 + 2x0r
2
0 − r0 = 0 ⇒ r

(1/2)
0 =

1

2x0
± 1

2x0

�
1− 4x20. (2.28)

Taking now x0 = 3/10 gives r
(1)
0 = 1/3 and r

(2)
0 = 3. Since we want the cylinder at

radius r0 to be in the inside of the cylinder with radius r = 1, i.e. r0 < 1, we discard

the solution r
(2)
0 . Therefore we find that the resulting conformal map is

f(z) =
z − 1/3
z/3− 1 =

3z − 1
z − 3 . (2.29)

We can now employ the solution of the previous section and compute the potential

for two non-coaxial infinite cylinders to

φ(r) = (φ0 − φ1)
ln(f(r))

ln r0
+ φ1 = −220

ln



3z−1z−3






ln 3
V. (2.30)

2Note that this is a special case of the most general linear fractional transformation that maps a circle

of radius one into a circle of radius one

T (z) = eiθ
z − γ

γ̄z − 1
for θ ∈ R, γ ∈ C,

as proven in the coursework.
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2.5 Thermal conductivity, steady state temperature between infinite plates

Under steady state conditions, which means we have no time dependence, the balance of

the heat flow through a solid yields the Laplace equation for the temperature T

∆T = ∂2xT + ∂2yT = 0. (2.31)

Now we wish to determine the temperature between two walls at positions x = ±π/2, which
are kept at temperature T = 0. The walls stand on a surface which is kept at temperature

T = 1. See figure 19 for the geometrical set up. This means we have to solve the following

Dirichlet problem

∆T = 0, T (±π/2, y) = 0, T (x, 0) = 1, for |x| < π

2
, y > 0. (2.32)

This is difficult to solve directly. Suppose instead that we had to solve the easier problem

of two parallel infinite plates

∆T = 0, T (x, 0) = 0, T (x, π) = 1, for 0 < y < π. (2.33)

This is solved directly by

T =0

y

x

T =0T =0

T = 1-

Figure 19: Temperature in semi-infinite walls.

T (x, y) =
y

π
, (2.34)

as one can check. As in the previous

section we try to make use of this solu-

tion and map the problem (2.32) onto

(2.33). Indeed we can employ the maps

f̃ : z 	→ w̃ f̃(z) = sin z,

f̂ : w̃ 	→ w f̂(w̃) = ln

�
w̃ − 1
w̃ + 1

�
,

f : z 	→ w f(z) = f̂ ◦ f̃(z).

z
4

z
3z

2

z
1

z-plane

y

x

T=0

T=0

T=1 /2- /2

~

~~~~ w
4

w
1 w

3
=1w

2
=-1

w-plane~

~u

~v

w=ln[(w-1)/(w+1)]
w = sin z

i

w
4

w
3

w
2

w
2w

3
w

1 u

v
w-plane~ ~

Figure 20: Conformal mapping of the semi-infinite strip to an infinite strip.
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Here the maps are simply given. In order to verify that they map indeed as indicated

in figure 20, let us parameterize at first the boundaries and investigate how they are

transformed. We use the identity

f̃(z) = sin z = sin(x+ iy) = sinx cos(iy) + cosx sin(iy) (2.35)

= sinx cosh y + i cosx sinh y.

Then the vertival line −π/2 + iy with y > 0 is mapped as follows

f̃
�
−π

2
+ iy
�
= sin

�
−π

2

�
cosh y + i cos

�
−π

2

�
sinh y = − cosh y. (2.36)

Since −∞ < cosh y < 1 we deduce that the vertical line −π/2 + iy is mapped to the

horizontal line x < −1 by f̃ as indicated in figure 20. Considering next the vertival line

π/2 + iy with y > 0 we find

f̃
�π
2
+ iy
�
= sin

�π
2

�
cosh y + i cos

�π
2

�
sinh y = cosh y, (2.37)

such that we deduce that this vertical line is mapped to the horizontal line x > 1 by f̃ as

indicated in figure 20. Finally we also map the horizontal line segment −π/2 < x < π/2

f̃ (x) = sin (x) cosh 0 + i cos (x) sinh 0 = sinx, (2.38)

which produces the horizontal line segment −1 < x < 1. Having established that the

boundaries are mapped as indicated we still have to investigate what happens to the inte-

rior. Since the region is connected it is sufficient to investigate the map of one point. For

instance we compute f̃ (i) = i sinh 1 which is in the upper half plane. We conclude from

this that indeed f̃(z) maps the region −π/2 < x < π/2, y ≥ 0 to the upper half plane.
Similarly we can show that f̂ maps the upper half plane to the vertical strip −∞ < x <∞,
0 < y < π.

Therefore, the solution to the first Dirichlet problem (2.32) is

T (x, y) =
1

π
Im(f̂ ◦ f̃(z)) = 1

π
Im

�
ln

�
sin z − 1
sin z + 1

��
. (2.39)

Let us work this out in more detail and simplify this. First we compute, recall (1.20) for

this

w = ln

�
w̃ − 1
w̃ + 1

�
= ln






w̃− 1
w̃+ 1





+ i arg

�
w̃− 1
w̃+ 1

�
= u+ iv, (2.40)

such that

Imw = arg

�
w̃ − 1
w̃ + 1

�
= arg

�
x̃+ iỹ − 1
x̃+ iỹ + 1

�
= arg

�
(x̃+ iỹ − 1)(x̃+ 1− iỹ)

(x̃+ 1 + iỹ)(x̃+ 1− iỹ)

�
, (2.41)

= arg

�
x̃2 + ỹ2 − 1 + i2ỹ)

(x̃+ 1)2 + ỹ2

�
= arctan

�
2ỹ

x̃2 + ỹ2 − 1

�
.

In the last equality we used (1.21). Next we need to express x̃, ỹ in terms of x, y. We have

w̃ = sin(z) = sin(x+ iy) = sinx cosh y + i cosx sinh y = x̃+ iỹ (2.42)
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and therefore

Imw = arctan

�
2 cosx sinh y

sin2 x cosh2 y + cos2 x sinh2 y − 1

�
(2.43)

= arctan

�
2 cosx sinh y

sinh2 y − cos2 x

�
= arctan

�
2 cosx/ sinh y

1− cos2 x/ sinh2 y

�
.

Introducing now the auxiliary variable tanγ = cosx/ sinh y we can use the identity tan 2γ =

2 tan γ/(1− tan2 γ) and obtain

Imw = arctan(tan2γ) = 2γ = 2arctan

�
cosx

sinh y

�
. (2.44)

This means the solution to the boundary Dirichlet problem (2.32) is

T (x, y) =
2

π
arctan

�
cosx

sinh y

�
. (2.45)

We may easily check that the boundary condition are indeed satisfied

T (±π/2, y) = 2

π
arctan

�
cos(±π/2)
sinh y

�
=
2

π
arctan 0 = 0, (2.46)

T (x, 0) =
2

π
arctan

� cosx
sinh 0

�
=
2

π
limx→∞ arctan (x) = 1. (2.47)

More work is to check that (2.45) satisfies also the Laplace equation. We leave this as an

exercise.

3. Transform Methods

In this part of the course we will study various transform methods, which also allow to solve

boundary value problems of certain type of differential equations. An integral transform is

a relation of the form

F (x) =

� β

α
K(x, t)f(t)dt. (3.1)

The function F is said to be the transform of f and K is called the kernel of the transfor-

mation.

3.1 The Fourier Transform

First recall that a periodic function f(x) = f(x+ 2π) can be expanded in terms of expo-

nential functions

f(x) =
∞�

k=−∞

cke
ikx, (3.2)

where the ck are constants. Often more familiar is an expansion in terms of trigonometric

functions, but this can be achieved simply by using Euler’s identity for eikx = cosx+i sinx.

Such a series is called a Fourier series. Terminating the sum at some finite value gives

often a very good approximation for f(x). When f(x) is not periodic such an expansion
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is no longer valid, but one may replace the sum in (3.2) by an integral and then obtains a

meaningful expression under certain circumstances. Let us define this more precisely:

Definition: The Fourier transform Fu(x)=û(x) of a piecewise smooth and absolutely
integrable function u(x) on the real line is defined as

Fu(x) := û(x) =

� ∞

−∞

u(t)e−itxdt. (3.3)

We have quoted here various notations which can be found in the literature Fu(x) =
Fu(x) = û(x) = ũ(x) . . . All of them are defined by the right hand side of (3.3). Here

we will mostly use Fu(x) and sometimes û(x). In the definition we have employed a few
notions, which we need to specify in more detail.

Definition: A function u(x) is said to be absolutely integrable when

� ∞

−∞

|u(t)| dt <∞. (3.4)

Definition: A function u(x) is said to be piecewise smooth when there exist a finite number

of points x1 < x2 < . . . < xn on the real axis such that

i) u(x) is continuous on all the intervals (-∞, x1), (x1, x2),. . . (xn,∞).

ii) the left and right limits of u(x) exists on all points x1, x2, . . . , xn.

Note that we do not demand that the left and right limits of u(x) coincide at the points

x1, x2, . . . , xn. Let us see how to compute Fu(x).
Example 1: Compute the Fourier transforms of the function

u(x) =

�
1 for |x| < λ

0 for |x| > λ
. (3.5)

Solution : First we verify that u(x) is piecewise smooth. Except at x = ±λ the function is
continuous, such that only at these two points we might encounter a problem. The

left and right limits at these points exist. The left limits are

lim
ε→0

u(λ− ε) = 1 lim
ε→0

u(−λ− ε) = 0 (3.6)

and the right limits are

lim
ε→0

u(λ+ ε) = 0 lim
ε→0

u(−λ+ ε) = 1. (3.7)

The function u(x) is also absolutely integrable

� ∞

−∞

|u(t)| dt =
� λ

−λ
1dt = 2λ <∞. (3.8)

From the definition of the Fourier transform (3.3) follows

Fu(x) =
� λ

−λ
e−itxdt =

i

x
e−itx





λ

−λ

= 2
sinλx

x
. (3.9)
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Example 2: Compute the Fourier transform of the function

u(x) =

�
1
x for x < 0

0 for x > 0
. (3.10)

Solution : In this case the left limit at x = 0 is not finite, such that u(x) is not piecewise

smooth and therefore the Fourier transform does not exit.

Example 3: Compute the Fourier transform of the function

u(x) =

�
lnx for x > 0

0 for x < 0
(3.11)

Solution : In this case the right limit at x = 0 is not finite, such that u(x) is not piecewise

smooth and therefore the Fourier transform does not exit.

Example 4: Compute the Fourier transform of theHeavyside function (unit step function)

u(x) =

�
0 for x < 0

1 for x ≥ 0 . (3.12)

Solution : In this case the function is not absolutely integrable since
�∞
−∞

|u(t)| dt =�∞
0 dt → ∞. Therefore the Fourier transform of u(x) does not exist. We will see

later that the Laplace transform is a more suitable integral transform to handle this

function.

Example 5: Compute the Fourier transform of the function

u(x) = e−x
2

(3.13)

Solution : Clearly u(x) is piecewise smooth. From the definition of the Fourier transform

(3.3) follows

Fu(x) =
∞�

−∞

e−t
2

e−itxdt =

∞�

−∞

e−(t+ix/2)
2

e−x
2/4dt (3.14)

= e−x
2/4

∞�

−∞

e−(t+ix/2)
2

dt =
√
πe−x

2/4. (3.15)

We assume here that we know the integral
�∞
−∞ e−(t+ix/2)

2

dt =
√
π, which can be

computed by integrating in the complex plane.
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3.1.1 Properties of the Fourier transform

Before looking at some application for Fourier transforms, let us first study some of its

basic properties:

i) Linearity: The Fourier transform acts linearly

F(λu+ κv)(x) = λF(u)(x) + κF(v)(x), λ, κ ∈ C (3.16)

which follows trivially from the definition (3.3).

ii) Translation: The Fourier transform for the shifted function v(x) = u(x+∆) with∆ ∈ R
is

Fv(x) =
� ∞

−∞

u(t+∆)e−itxdt =
t→t−∆

eix∆Fu(x). (3.17)

iii) Scaling : The Fourier transform for the scaled function v(x) = u(λx) with λ ∈ R+ is

Fv(x) = Fu(λx) =
� ∞

−∞

u(λt)e−itxdt =
t→t/λ

1

λ

� ∞

−∞

u(t)e−itx/λdt =
1

λ
û(x/λ). (3.18)

Note here that û(x/λ) means (Fu)(x/λ) and not Fu(x/λ).

iv) Derivative of u: The Fourier transform for the derivative u′(x) of the function u(x) is

Fu′(x) =
� ∞

−∞

u′(t)e−itxdt = u(t)e−itx


∞
−∞
+ ix

� ∞

−∞

u(t)e−itxdt = ixFu(x). (3.19)

when limt→±∞ u(t) = 0. We integrated here by parts. Note this is of course not to

be confused with the derivative of Fu(x).

3.1.2 The convolution of two functions

Definition: The convolution of two functions u(x) and v(x) is defined as

u ⋆ v(x) =

� ∞

−∞

u(t)v(x− t)dt. (3.20)

The convolution satisfies an important property, which we will exploit below.

Lemma 3: The Fourier transform of the convolution u ⋆ v(x) equals the product of the

Fourier transforms of u and v

F(u ⋆ v)(x) = (Fu)(x)(Fv)(x). (3.21)

Proof : The proof is straightforward. From the definition (3.3) follows

F(u ⋆ v)(x) =
� ∞

−∞

(u ⋆ v)(t)e−itxdt =

� ∞

−∞

dt

� ∞

−∞

ds u(s)v(t− s)e−itx

=

� ∞

−∞

ds u(s)

�� ∞

−∞

dt v(t− s)e−itxeisx
�
e−isx

=

� ∞

−∞

ds u(s)e−isx
�� ∞

−∞

dt v(t)e−itx
�

= F(u)F(v).

We are now equipped to solve a concrete boundary value problem by means of Fourier

transforms.�
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3.1.3 An application of the Fourier transform, the heat equation

We consider a one-dimensional infinite rod. The temperature T (t, x) is a function of the

time t and position x, which has to satisfy the heat equation

∂T (t, x)

∂t
=

∂2T (t, x)

∂x2
. (3.22)

Notice that under steady state conditions the equation reduces to the Laplace equation

in one dimension, which we have encountered before. Now the new feature of a time

dependence enters into our considerations. As initial condition we take

T (0, x) = f(x) for −∞ < x <∞, (3.23)

with some function f(x) which we do not specify further at this stage. We assume that

the temperature at the end of the rod is zero and that the derivatives vanish. This means

our boundary conditions are of Dirichlet and Neumann type

lim
x→±∞

T (t, x) = lim
x→±∞

∂xT (t, x) = 0. (3.24)

We will now employ the Fourier transform in the space variable x to solve the heat equation.

From the definition of the Fourier transform (3.3) of T (t, x) we have

FxT (t, x)T̂ (t, x) =
� ∞

−∞

T (t, s)e−isxds. (3.25)

Since T depends now on two variables x and t we have indicated here explicitly in which

variable we take the Fourier transform, i.e. in x. Taking the derivative of this equation

and using subsequently the heat equation gives

∂tT̂ (t, x) =

� ∞

−∞

∂tT (t, s)e
−isxds =

� ∞

−∞

∂2sT (t, s)e
−isxds. (3.26)

Integrating now twice by parts and using the boundary conditions (3.24) gives

∂tT̂ (t, x) = ∂sT (t, s)e
−isx


∞
−∞
+ ix

� ∞

−∞

∂sT (t, s)e
−isxds

= ∂sT (t, s)e
−isx


∞
−∞
+ ix T (t, s)e−isx



∞
−∞

− x2
� ∞

−∞

T (t, s)e−isxds

= −x2
� ∞

−∞

T (t, s)e−isxds = −x2T̂ (t, x). (3.27)

Next we invoke the initial condition (3.23)

T̂ (0, x) =

� ∞

−∞

T (0, s)e−isxds =

� ∞

−∞

f(s)e−isxds = f̂(x). (3.28)

Thus we have reduces the original problem of a second order differential equation (3.22) with

given boundary condition (3.24) to a first order differential equation with given boundary

condition

∂tT̂ (t, x) = −x2T̂ (t, x) , T̂ (0, x) = f̂(x). (3.29)
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The equation (3.29) is solved by

T̂ (t, x) = f̂(x)e−tx
2

. (3.30)

From our example 5 we know that Fu(x) = √πe−x2/4 = û(x) for u(x) = e−x
2

. Recalling

also the scaling property (3.18) we deduce that

F(e−x2/4t) = 2
√
tû(2

√
tx) = 2

√
πte−tx

2

for x ∈ R. (3.31)

This means we can deduce that e−tx
2

is the Fourier transform of the function

K(x) =
1

2
√
πt

e−
x2

4t , (3.32)

such that (3.30) maybe rewritten as

FT (t, x) = f̂(x)K̂(x) = F(f ⋆ K)(x), (3.33)

where we used the convolution theorem (3.20) in the last equality. We may now drop the

F from (3.33) or more formally act with the inverse Fourier transform on both sides and

express the temperature function T (t, x) as a convolution between the functions f and K

T (t, x) =

� ∞

−∞

f(y)
1

2
√
πt

e−i(x−y)
2/4tdy =

1

2
√
πt

� ∞

−∞

f(y)e−i(x−y)
2/4tdy. (3.34)

This solves the heat equation with given boundary conditions and once the initial condition

is also given we are only left with one integral.

3.2 The Laplace transform

The Laplace transform of a function u(x) is essentially the Fourier transform of this function

whose argument is rotated by −π/2

Fu(f−π/2R x) = Fu(e−iπ/2x) = Fu(−ix) =
� ∞

−∞

u(t)e−xtdt. (3.35)

Since in comparison with the Fourier transform we have now traded the oscillatory function

e−ixt for e−xt, we require a very strong decay for u(t) when t → −∞. To avoid this one
usually assumes that u(x) = 0 for −∞ < x < 0. This does not really pose a serious

restriction as in many ways this makes the Laplace transform actually more physical (more

realistic) than the Fourier transform. Usually in a physical context something, e.g. a laser

pulse, an electric or magnetic signal, etc., is switched on at some point in time. Without

loss of generality we may set this point in time to t = 0. Only from that moment onwards

one would like to study the system and has no interest in what happened before. Let us

assemble these notions and define the Laplace transform more formally:

Definition: The Laplace transform Lu(x) of a piecewise smooth function u(x) with ex-

ponential growth α is defined as

Lu(x) :=
� ∞

0
u(t)e−txdt for x > α. (3.36)
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We need to specify what we mean by exponential growth and explain why we require this

new notion here.

Definition: The function u(x) is said to have exponential growth α if there exists a

constant µ such that

|u(x)| ≤ µeαx for x > 0, with α, µ ∈ R. (3.37)

Notice that the important role is played here by the constant α as this leads to a restriction

for x in (3.36) for the validity of the Laplace transform. The constant µ only has to exist

and makes no further impact. Let us see why this is a useful property to have. The

knowledge of how the function grows can be used to ensure the existence of the integral,

as one can see by the following argument

Lu(x) ≤
� ∞

0
|u(t)| e−txdt ≤ µ

� ∞

0
eαxe−txdt = µ

� ∞

0
e(α−x)tdt =

µ

x− α
<∞ for x > α.

(3.38)

The first inequality simply follows from the obvious fact that
�
f(t)dt ≤

�
|f(t)| dt. In the

second inequality we used the definition of the exponential growth (3.37) and the rest is a

straightforward computation of the integral.

Let us compute some explicit examples of Laplace transforms3:

Example 1: Compute the Laplace transform of the Heavyside function

H(x) =

�
0 for x < 0

1 for x ≥ 0 . (3.41)

Solution : We have seen in example 4 of the previous section that we can not compute the

Fourier transform of this function. Computing now the Laplace transform there is no

problem with the convergence of the integral. Obviously H(x) is piecewise smooth.

Furthermore, the function is of exponential growth α = 0, since

|H(x)| = 1 ≤ µ for µ ≥ 1. (3.42)

We then compute

LH(x) =
� ∞

0
e−txdt = −1

x
e−tx





∞

0

=
1

x
for x > α = 0. (3.43)

3 !!! Warning: The notation for the Laplace transform can be confusing at times in the literature. One

finds usually

u(x) ⇔ (Lu)(s) . (3.39)

When we do not express u as a function of x in Lu there is no confusion and one could also write (Lu)(x)

instead of (Lu)(s). However, when we have a concrete functions, say u(x) = eαx, one often finds

u(x) = eαx ⇔ (Leαx)(s) =
1

s− α
or (Leαs)(x) =

1

x− α
. (3.40)

Here one needs to be very clear about the roles played by the parameters s and x, as one has the rather

odd situation of variable appearing on the left hand side of the equation which are absent on the right hand

side. We avoid this here usually by writing the function name instead of its explicit form.
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Note that the restriction we found from the exponential growth for x automatically

takes care of the singular point x = 0, which would otherwise be ill defined in our

final answer.

Example 2: Compute the Laplace transform of the function

u(x) =

�
0 for x < 0

x for x ≥ 0 . (3.44)

Solution : The function u(x) is piecewise smooth and of exponential growth α = ε > 0,

since

|u(x)| = x ≤ µeεx for µ = x, ε > 0. (3.45)

Integrating by parts4 (with u = t, v′ = e−tx, u′ = 1, v = −1/xe−xt) gives

Lu(x) =
� ∞

0
te−txdt = − t

x
e−tx





∞

0

+
1

x

� ∞

0
e−txdt =

1

x2
for x > α = ε = 0. (3.46)

We can generalize this to u(x) = xk by integrating k times by parts. Then we find

(exercise)

Lu(x) = k!

xk+1
for x > α = ε = 0. (3.47)

Obviously (3.47) reduces to (3.46) for k = 1.

Example 3: Compute the Laplace transform of the function

u(x) =

�
0 for x < 0

eβx for x ≥ 0 . (3.48)

with β ∈ R.

Solution : The function u(x) is piecewise smooth and of exponential growth α = β, since

|u(x)| = eβx ≤ µeβx for µ ≥ 1. (3.49)

We compute

Lu(x) =
� ∞

0
eβte−txdt =

� ∞

0
e(β−x)tdt =

e(β−x)t

β − x








∞

0

=
1

x− β
for x > β. (3.50)

Example 4: Compute the Laplace transform of the function

u(x) =

�
0 for x < 0

sinλx for x ≥ 0 . (3.51)

with λ ∈ R.
4Recall the conventions

� β
α
uv′dx = uv|β

α
−
� β
α
u′vdx.
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Solution : The function u(x) is piecewise smooth and of exponential growth α = 0, since

|u(x)| = sinλx ≤ µ for µ ≥ 1. (3.52)

Integrating by parts (u = e−tx, v′ = sinλt, u′ = −xe−xt, v = −1/λ cosλt) gives

Lu(x) =
� ∞

0
sinλte−txdt = −1

λ
cos(λt)e−tx






∞

0

− x

λ

� ∞

0
cos(λt)e−txdt

=
1

λ
− x

λ

� ∞

0
cos(λt)e−txdt (3.53)

Integrating once more by parts (with u = e−tx, v′ = cosλt, u′ = −xe−xt, v =
1/λ sinλt) gives

Lu(x) = 1

λ
− x

λ

�
1

λ
sin(λt)e−tx






∞

0

+
x

λ

� ∞

0
sin(λt)e−txdt

�

=
1

λ
− x2

λ2
Lu(x). (3.54)

We can solve this for Lu(x) and find

Lu(x) = λ

λ2 + x2
for x > α = 0. (3.55)

Example 5: Compute once more the Laplace transform of the Heavyside function, but

with shifted argument v(x) = H(x− α) where α ∈ R+.

Solution : H(x) is of course still piecewise smooth and of exponential growth α = 0. Now

we compute

Lv(x) =
� ∞

0
H(t− α)e−txdt =

� ∞

α
e−txdt = −1

x
e−tx





∞

α

=
1

x
e−αx. (3.56)

Alternatively we can integrate by parts (with u = H(t − α), v′ = e−tx, u′ = H ′(t −
α), v = −1/xe−xt). We do not know what H ′(t−α) means and in fact we should be

quite worried because H(t− α) is not continuous at t = α, i.e. it is not well defined

at all. Despite these concerns we compute

Lu(x) = −1
x
H(t− α)e−tx






∞

0

+

� ∞

0
H ′(t− α)

1

x
e−txdt (3.57)

=

� ∞

0
H ′(t− α)

1

x
e−txdt =

1

x
e−αx. (3.58)

In the last equality we have used the result from (3.56). We do not know what the

derivativeH ′(t−α)means by itself, but the relation (3.58) tells us about its behaviour
under an integral. It has the effect that the other function under the integral just

acquires the value at the discontinuity. We take this observation as a motivation for

defining a new function:
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Definition: The Dirac delta "function" δ(x − α) := H ′(x − α) is defined through the

property

f(α) =

� ∞

−∞

δ(x− α)f(x)dx. (3.59)

The quotation marks indicate that despite the fact that in the literature δ(x) is referred to

as a function it is not. Strictly speaking the expression δ(x) is a distribution and only makes

proper sense under an integral. Intuitively we can understand this behaviour H ′(x − α)

is zero everywhere, except at x = α, where it peaks very strongly. Therefore the function

f(x) under the integral is multiplied always by zero except at x = α. We will make use of

this function below.

We will not discuss the Dirac delta function in detail, but we will exploit below one of

its properties. It admits the integral representation

δ(x) =
1

2π

� ∞

−∞

eitxdt. (3.60)

We will not derive this representation in detail but simply try to understand it intuitively.

The integral should yield 0 everywhere except for x = 0. Thinking of eitx as cosx+ i sinx

it is clear we sum up equal positive and negative areas, such that overall we obtain 0.

Rigorously we would have to ensure the existence of the limit. When x = 0 the integral

diverges just as the Dirac delta function. This reasing makes the expression plausible, but

of course in order to establish that it also satisfies the defining property (3.59) we would

need a more detailed analysis.

Having seen now how to compute Laplace transforms with their corresponding restric-

tions in the domain to guarantee their existence, we can study next some further useful

properties.

3.2.1 Properties of the Laplace transform

Before we can apply the Laplace transform to solve differential equations we need familiarize

ourselves with some of its basic properties:

i) Linearity: The Laplace transform acts linearly

L(λu+ κv)(x) = λL(u)(x) + κL(v)(x), λ, κ ∈ C, (3.61)

which follows trivially from the definition (3.3).

ii) Translation: Unlike as for the Fourier transform the Laplace transform for the shifted

function v(x) = u(x+ ∆) with ∆ ∈ R is not very useful, as the ∆-shift can not be
absorbed into the integration limits such that the resulting term is not a simple one

in form of Laplace transforms. More useful is to compute the Laplace transform of

v(x) = ex∆u(x)

Lv(x) =
� ∞

0
et∆u(t)e−txdt =

� ∞

0
u(t)e−t(x−∆)dt = Lu(x−∆). (3.62)
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iii) Scaling : The Laplace transform for the scaled function v(x) = u(λx) with λ ∈ R+ is

Lv(x) =
� ∞

0
u(λt)e−txdt =

1

λ

� ∞

0
u(t)e−xt/λdt =

1

λ
Lu(x/λ). (3.63)

Here there is no problem to absorb the scale factor into the integration limits.

iv) Derivative of u: The Laplace transform for the derivative u′(x) of the function u(x) is

Lu′(x) =
� ∞

0
u′(t)e−txdt = u(t)e−tx



∞
0
+ x

� ∞

0
u(t)e−txdt = xLu(x)− u(0), (3.64)

where we integrated by parts and assumed that u(t) decays at infinity such that

limt→∞ u(t)e−tx = 0. Formula (3.64) is easily generalized by integrating n times by

parts to

Lu(n)(x) = xnLu(x)−
�n−1

k=0
xn−k−1u(k)(0). (3.65)

We leave this as an exercise. Clear for n = 1 the general formula (3.65) reduces to

(3.64).

v) Derivative of Lu: The derivative of the Laplace transform Lu(x) is

d

dx
Lu(x) = d

dx

�� ∞

0
u(t)e−txdt

�
= −
� ∞

0
tu(t)e−txdt = −Lv(x), (3.66)

with v(t) = tu(t).

As for the Fourier transform an important property is the Laplace transform of the convo-

lution.

Lemma 4: The Laplace transform of the convolution of the two functions u and v, i.e.

u ⋆ v(x) equals the product of the Laplace transforms these functions

L(u ⋆ v)(x) = (Lu)(x)(Lv)(x). (3.67)

Proof : The proof is similar as the cor-

t=st=s

t

s

t

s

Figure 21: Order of integration change in (3.69).

responding one for the Fourier trans-

form, but as a difference we start now

from the right hand side of the equa-

tion (3.67). By definition of the Laplace

transform we have

(Lu)(x)(Lv)(x) (3.68)

=

� ∞

0
u(t)e−txdt

� ∞

0
v(s)e−sxds

=

� ∞

0
dt

� ∞

0
ds u(t)v(s)e−x(t+s).
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Shifting now s→ s− t we obtain

(Lu)(x)(Lv)(x) =
� ∞

0
dt

� ∞

t
ds u(t)v(s− t)e−xs. (3.69)

Next we change the order of integration according to
�∞
0 dt

�∞
t ds →

�∞
0 ds

� s
0 dt.

Figure 21 provides an illustration of the fact that in order to cover the entire inte-

gration area we can either sum up horizontal or vertical slices. We then obtain

(Lu)(x)(Lv)(x) =
� ∞

0
ds

� s

0
dt u(t)v(s− t)e−xs (3.70)

=

� ∞

0
ds

�� ∞

−∞

dt u(t)v(s− t)

�
e−xs (3.71)

=

� ∞

0
ds(u ⋆ v)(s)e−xs (3.72)

= L(u ⋆ v)(x). (3.73)

In going from (3.70) to (3.71) we have extended integration limits to ±∞, by using
the fact that functions for which we compute Laplace transforms are switched on at

t = 0, i.e. u(t) = v(t) = 0 for t < 0. In the step from (3.71) to (3.72) we simply used

the definition of the convolution (3.20). �

3.2.2 The inverse of the Laplace transform

For the Fourier transform we have briefly eluded to the notion of the inverse transform. For

Laplace transforms this is more complicated and we need to elaborate on their computation

in more detail.

Definition: Suppose that v(x)=Lu(x), then the inverse L−1 of the Laplace transform is

the transformation

L−1v(x) = L−1 [Lu(x) ] = u(x). (3.74)

Next we have to see how to compute the inverse explicitly.

Lemma 5: The inverse of the Laplace

 

c

 - i r

 + i r

singularities of v(x)

Figure 22: Contour of the Bromwich integral.

transform

Lu(x) = v(x) for x > α (3.75)

can be computed by the Bromwich integral

L−1v(x) = 1

2πi

� γ+i∞

γ−i∞
v(t)etxdt for γ > α.

(3.76)

The contour of the integral is indicated

as the vertical line in figure 22 for r →
∞.
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Proof :We suppose that Lu(x) = v(x) exists when x > α. Extracting now the exponential

growth from u(x) by introducing a new function g(x) then we deduce that for u(x) =

eγxg(x) the Laplace transform Lg(x) exists for γ > α. This follows from |g(x)| = |u(x)e−γx|
≤ µ |e−γx| |eαx| = µe(α−γ)xsuch that the exponential growth of g(x) is α − γ with µ ≥ 1.
Using the definition of the Dirac delta function (3.59) we can rewrite the function g(x) as

g(x) =

� ∞

−∞

g(t)δ(x− t)dt. (3.77)

Using now the integral representation (3.60) of the Dirac delta function

δ(x− t) =
1

2π

� ∞

−∞

eiω(x−t)dω (3.78)

we can express g(x) in (3.77) as

g(x) =
1

2π

� ∞

−∞

eiωxdω

� ∞

−∞

g(t)e−iωtdt =
1

2π

� ∞

−∞

eiωxdω

� ∞

0
g(t)e−iωtdt, (3.79)

where in the last equality we simply used the fact that g(t) = 0 for t < 0. Using now

that u(x) = eγxg(x) we obtain

u(x) =
eγx

2π

� ∞

−∞

eiωxdω

� ∞

0
u(t)e−γte−iωtdt. (3.80)

Changing variables by s = γ + iω we compute

u(x) =
1

2πi

� γ+i∞

γ−i∞
esxds

� ∞

0
u(t)e−stdt =

1

2πi

� γ+i∞

γ−i∞
esxdsLu(s), (3.81)

which is what we wanted to show.�

Let us now see for some concrete examples of how these integrals may be evaluated.

Example 1: We know already from example 4 of the previous section that

u(x) =

�
sinλx for x ≥ 0

0 for x < 0
⇔ Lu(x) = λ

λ2 + x2
for x > 0. (3.82)

with λ ∈ R. In other words we know that

v(x) =
λ

λ2 + x2
⇔ L−1v(x) = sinλx. (3.83)

Let us compute the inverse of v(x) by using the Bromwich integral.

Solution : The Bromwich integral (3.76) for the function of v(x) is

L−1v(x) = 1

2πi

� ε+i∞

ε−i∞

λ

λ2 + t2
etxdt for ε > 0. (3.84)
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Provided that the integral over the semi-circle Γc : z = ε+ reiθ as indicated in figure

22 with γ → ε, vanishes, we obtain

L−1v(x) = 1

2πi

�

Γ

λ

(z − iλ)(z + iλ)
exz0dz. (3.85)

Since the two simple order poles are on the imaginary axis and ε > 0 the Residue

theorem5 gives

L−1v(x) = 2πi
2πi

Res
z0=±iλ

exz0

(z0 − iλ)(z0 + iλ)
. (3.87)

Computing the Residues6 yields the expected answer

L−1v(x) = λ
eiλx

2iλ
+

λe−iλx

−2iλ = sinλx. (3.90)

We still have to show that the integral over the semi-circle Γc vanishes. This means

we want to establish
�

Γc

λ

λ2 + z2
exzdz = 0 where Γc : z = ε+ reiθ,

π

2
≤ θ ≤ 3

2
π. (3.91)

We estimate

λ







�

Γc

exz

λ2 + z2
dz





 = λ








� 3π/2

π/2

eεxexre
iθ

λ2 + (ε+ reiθ)2
reiθdθ







(3.92)

≤ λeεx
� 3π/2

π/2




exre
iθ






reiθ







λ2 + (ε+ reiθ)2




dθ (3.93)

≤ λeεx
� 3π/2

π/2

r

λ2 + r2
dθ = λeεx

r

λ2 + r2
→ 0 for r→∞.

In (3.93) we have used



reiθ



 = r




exre
iθ



 =



exr cos θeixr sin θ




 = exr cos θ ≤ 1 for
π

2
≤ θ ≤ 3

2
π





λ
2 +
�
ε+ reiθ

�2



 > λ2 + r2

5Recall the Residue theorem from Mathematical Methods I: Let f(z) be an analytic function on a simply

connected domain D, except for a finite number of isolated singularities z1, z2, . . . , zn and let Γ be some

closed positively oriented curve in D, which is piecewise smooth and with z1 /∈ Γ. Then
�

Γ

f(z)dz = 2πi
�n

i=1
Res
z0=zi

f(z0). (3.86)

6Recall the definition of a Residue from Mathematical Methods I: Suppose there is a Laurent expansion

of f(z) about z0
f(z) =

�∞

n=−∞
an(z − z0)

n. (3.88)

Then the coefficient

a−1 =
1

2πi

�

Γ

f(z)dz (3.89)

is called the residue of f(z) at z = z0.
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Example 2: We know already from example 3 of the previous section that

u(x) =

�
eβx for x ≥ 0
0 for x < 0

⇔ Lu(x) = 1

x− β
for x > β. (3.94)

with β ∈ R. In other words we know that

v(x) =
1

x− β
⇔ L−1v(x) = eβx. (3.95)

Solution : Now the Bromwich integral (3.76) gives

L−1v(x) = 1

2πi

� µ+i∞

µ−i∞

1

t− β
etxdt for µ > β (3.96)

Provided that the integral over the semi-circle Γc : z = µ+ reiθ vanishes (we leave it

as an exercise to show this), we obtain

L−1v(x) = 1

2πi

�

Γ

λ

z − β
exzdz =

2πi

2πi
Res
z0=β

exz0

z0 − β
= eβx. (3.97)

We have seen that it is far easier to compute the Laplace transform rather than its

inverse as the above integrals are relatively involved to compute. It is therefore desirable

to have an alternative simpler method at hand. In fact, we knew already the answer in our

examples because the functions for which we wanted to compute the Laplace transforms

resulted already as a Laplace transform of some other function. We may use this as a

general principle and extract these answer from tables of Laplace transforms. Indeed,

whenever we have a function of polynomial form u(x) = g(x)/h(x) this can be achieved

in a very systematic manner by expanding u(x) in partial fractions (recall Calculus I).

Suppose that the degree g(x) in x is lower than the degree of h(x) in x we can write

u(x) =
�

n

�
m

cn,m
(x− αn)m

. (3.98)

Here the αn are the roots of h(x) and m are their mulitiplicities. The Laplace transform

of each individual term on the right hand side in (3.98) are easily computed and since the

Laplace operator is a linear operator (3.61), we know the Laplace transform of u(x). Let

us work out some examples to see what this means.

Example 3: Compute the inverse Laplace transform of the function

u(x) =
λ2

x(x2 + λ2)
. (3.99)

with λ ∈ R.

Solution : Expanding u(x) gives

u(x) =
λ2

x(x2 + λ2)
=

Ax+B

x2 + λ2
+

C

x
=

Ax2 +Bx+Cx2 +Cλ2

x(x2 + λ2)
(3.100)
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Comparing coefficients of powers in x yields

A+C = 0, B = 0, C = 1 ⇒ A = −1. (3.101)

This means we can write u(x) as

u(x) = − x

x2 + λ2
+
1

x
, (3.102)

such that

L−1(u) = L−1
�
1

x

�
−L−1

�
x

x2 + λ2

�
. (3.103)

From (3.43) we know that

L−1
�
1

x

�
= H(x). (3.104)

Furthermore, from our previous example 4 (3.55) we know that

L (sinλx) = λ

λ2 + x2
for x > 0. (3.105)

Taking now u(x) = sinλx in the relation for the Laplace transform of the derivative

(3.64), we obtain with u′(x) = λ cosλx, such that

L (λ cosλx) = λx

λ2 + x2
. (3.106)

Therefore we obtain

L−1
�

x

x2 + λ2

�
= cosλx. (3.107)

Assembling (3.103), (3.104) and (3.107) this gives as a final answer

L−1
�

λ2

x(x2 + λ2)

�
= H(x)− cosλx. (3.108)

Example 4: Compute the inverse Laplace transform of the function

u(x) =
x

(x+ λ)(x+ µ)
for λ �= µ;λ, µ ∈ R. (3.109)

Solution : Again we start by a partial fraction expansion of u(x)

u(x) =
x

(x+ λ)(x+ µ)
=

A

x+ λ
+

B

x+ µ
=

A(x+ µ) +B(x+ λ)

(x+ λ)(x+ µ)
. (3.110)

Comparing coefficients of powers in x yields

A+B = 1, Aµ+Bλ = 0, ⇒ A =
λ

λ− µ
,B =

µ

µ− λ
(3.111)

This means we can write u(x) as

u(x) =
1

λ− µ

�
λ

x+ λ
− µ

x+ µ

�
, (3.112)
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such that

L−1(u) = 1

λ− µ

�
L−1
�

λ

x+ λ

�
−L−1

�
µ

x+ µ

��
. (3.113)

From (3.50) we know that

L−1
�

1

x+ β

�
= e−βx (3.114)

Assembling this yields the final answer

L−1
�

x

(x+ λ)(x+ µ)

�
=

1

λ− µ

�
λe−λx − µe−µx

�
. (3.115)

Now we have collected enough techniques to apply the Laplace transform for some concrete

boundary value problems.

3.2.3 Applications of the Laplace transform

Just like the Fourier transform we can use the Laplace transform to transform some difficult

problems to easier ones. In particular, we can reduce the order of differential equations.

A first order differential equation with given boundary condition Solve the

differential equation

u′(x) + u(x) = H(x)−H(x− 1) (3.116)

with boundary condition u(0) = 1.

Solution : We start by acting with the Laplace operator on equation (3.116)

Lu′(x) + Lu(x) = LH(x)−LH(x− 1) = 1
x
(1− e−x) (3.117)

Using the property (3.64) Lu′(x) = xLu(x)−u(0) and invoking the boundary condi-

tion u(0) = 1 gives

Lu(x)(1 + x)− 1 = 1
x
(1− e−x). (3.118)

Solving this equation for Lu(x) yields

Lu(x) = 1

1 + x

�
1

x
(1− e−x) + 1

�
=
1

x
− e−x

�
1

x
− 1

1 + x

�
. (3.119)

Using the Laplace transforms for the functions v(x) = δ(x− 1), H(x), u(x) = e−x

Lv(x) = e−x, LH(x) = 1
x
, and Lu(x) = 1

1 + x
, (3.120)

we can rewrite (3.119) as

Lu(x) = LH(x)−Lv(x)LH(x) + Lv(x)Lu(x). (3.121)

By means of lemma 5 follows

Lu(x) = LH(x)−L [v ⋆ H] (x) + L [v ⋆ u] (x), (3.122)
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such that when acting with L−1 on this equation we obtain

u(x) = H(x)− v ⋆ H(x) + v ⋆ u(x) (3.123)

= H(x)−
� ∞

0
δ(t− 1)H(x− t)dt+

� ∞

0
δ(t− 1)e−(x−t)dt (3.124)

=

�
1 for 0 < x < 1

e−(x−1) for 1 < x <∞ (3.125)

The harmonic oscillator A point particle of mass m is fixed on a spring with spring

constant κ. Neglecting friction Newton’s second law describes the motion of this particle

as

mẍ(t) + κx(t) = 0, (3.126)

where x is the vertical displacement of the particle as a function of time t. Solve this

equation using Laplace transforms with initial conditions x(0) = x0 and ẋ(0) = 0.

Solution : Once again we start by acting with the Laplace operator on the equation (??)

mLẍ(t) + κLx(t) = 0 (3.127)

Using the property (3.65) for n = 2, i.e. Lẍ(t) = t2Lx(t)− tx(0)− ẋ(0), and invoking

the boundary conditions gives

mt2Lx(t)−mtx0 + κLx(t) = 0. (3.128)

Solving this equation for Lx(t) yields

Lx(t) = mtx0
mt2 + κ

= x0
t

t2 + ω2
, (3.129)

where we introduced the quantity (frequency) ω2 := κ/m. Therefore we obtain

x(t) = x0L−1
�

t

t2 + ω2

�
= x0 cosωx. (3.130)

The last equality follows from (3.107). This is of course the answer we expect.

The wave equation with boundary conditions Solve the wave equation

φxx(x, t)− φtt(x, t) = 0 (3.131)

subject to the initial conditions φ(x, 0) = sinx for 0 < x < π, φt(x, 0) = 0 and φ(0, t) =

φ(π, t) = 0 for t > 0.

Solution : We start by differentiating twice the Laplace transform in t of φ(x, t)

d2

dx2
Ltφ(x, t) = Ltφxx(x, t) = Ltφtt(x, t), (3.132)
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where in the last equality we used the wave equation. Using the property (3.65) for

n = 2

Ltφtt(x, t) = t2Ltφ(x, t)− tφ(x, 0)− φt(x, 0) (3.133)

and the initial conditions we obtain a linear second order differential for Ltφ(x, t)

d2

dx2
Ltφ(x, t) = t2Ltφ(x, t)− t sinx for 0 < x < π. (3.134)

This may be solved by

Ltφ(x, t) = A(t) sinx+B(t) cosx. (3.135)

From φ(0, t) = 0 follow B(t) = 0. Substituting (3.135) into (3.134) gives then

−A(t) sinx = t2A(t) sinx− t sinx ⇒ A(t) =
t

t2 + 1
. (3.136)

Therefore

Ltφ(x, t) =
t

t2 + 1
sinx (3.137)

and hence

φ(x, t) = sinxL−1t
t

t2 + 1
= sinx cos t. (3.138)

In the last equality we used (3.107) for λ = 1.

Solution of integral equations Solve the Volterra integral equation

φ(x) +

� x

0
K(x− t)φ(t)dt = f(x) (3.139)

for φ(x) in terms of the Laplace transforms of the function f(x) and K(x).

We may rewrite (3.139) as

φ(x) +

� ∞

0
H(x− t)K(x− t)φ(t)dt = f(x). (3.140)

We recognize that the integral is in fact a convolution, such that (3.140) may be expressed

as

φ(x) + v ∗ φ(x) = f(x), (3.141)

with v(x) = H(x)K(x). Acting on this equation with the Laplace operator and making

use of lemma 4 gives

Lφ(x) + LK(x)Lφ(x) = Lf(x). (3.142)

Solving (3.142) for Lφ(x) yields

Lφ(x) = Lf(x)
1 + LK(x) , (3.143)

and hence

φ(x) = L−1
� Lf
1 + LK

�
(x), (3.144)
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Historical remarks and references

There are plenty of books on complex analysis. Here are some you may find useful:

• Complex variables and their application by A.D. Orborne, library location 515.9 OSB

• Fundamentals of Complex Analysis by E.B. Saff, A.D. Snider, library location 515. SAF

• Applied Complex Analysis, N.H. Asmar, G.C. Jones, library location 515.9 ASM

• Theory and Problems of Complex Variables, M.R. Spiegel, library location 515.9 SPI

• Fundamentals of Differential Equations and Boundary Value Problems, R. Kent Nagle, E. B.
Saff, library location 515.35 NAG

[1] Carl Friedrich Gauß (1777-1855) was a German mathematician

Figure 23: C.F. Gauß

who is sometimes called the "prince of mathematics." He was a prodi-

gious child, at the age of three informing his father of an arithmetical

error in a complicated payroll calculation and stating the correct an-

swer. In school, when his teacher gave the problem of summing the

integers from 1 to 100 (an arithmetic series
 n
k=1 k = n(n+ 1)/2) to

his students, Gauß immediately wrote down the correct answer 5050

on his slate.

At the age of 19, Gauß demonstrated a method for construct-

ing a heptadecagon using only a straightedge and compass which had

eluded the Greeks. Gauß also showed that only regular polygons of a

certain number of sides could be obtained in that manner (a heptagon, for example, could not be

constructed.)

Gauß proved the fundamental theorem of algebra (Every polynomial equation having complex

coefficients and degree has at least one complex root.). In fact, he gave four different proofs, the first

of which appeared in his dissertation. In 1801, he proved the fundamental theorem of arithmetic

(The fundamental theorem of arithmetic states that every positive integer (except the number 1)

can be represented in exactly one way apart from rearrangement as a product of one or more

primes.).

At the age of 24, Gauß published one of the most brilliant achievements in mathematics, Dis-

quisitiones Arithmeticae (1801). In it, Gauß systematized the study of number theory Gauß proved

that every number is the sum of at most three triangular numbers and developed the algebra of

congruences.

In 1801, Gauß developed the method of least squares fitting, 10 years before Legendre, but

did not publish it. The method enabled him to calculate the orbit of the asteroid Ceres, which

had been discovered by Piazzi from only three observations. However, after his independent dis-

covery, Legendre accused Gauß of plagiarism. Gauß published his monumental treatise on celestial

mechanics Theoria Motus in 1806. He became interested in the compass through surveying and

developed the magnetometer and, with Wilhelm Weber measured the intensity of magnetic forces.

With Weber, he also built the first successful telegraph.
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Gauß is reported to have said "There have been only three epoch-making mathematicians:

Archimedes, Newton and Eisenstein" Most historians are puzzled by the inclusion of Eisenstein in

the same class as the other two. There is also a story that in 1807 he was interrupted in the middle

of a problem and told that his wife was dying. He is purported to have said, "Tell her to wait a

moment until I’m through"

Gauß arrived at important results on the parallel postulate, but failed to publish them. Credit

for the discovery of non-Euclidean geometry therefore went to Janos Bolyai and Lobachevsky.

However, he did publish his seminal work on differential geometry in Disquisitiones circa superticies

curvas. The Gaußian curvature (or "second" curvature) is named for him. He also discovered the

Cauchy integral theorem (This is equation (3.86) in the absence of any isolated singularity, i.e.

when the right hand side becomes zero.)for analytic functions, but did not publish it.

Gauß reworked and improved papers incessantly, therefore publishing only a fraction of his

work, in keeping with his motto "pauca sed matura" (few but ripe). Many of his results were

subsequently repeated by others, since his terse diary remained unpublished for years after his

death. This diary was only 19 pages long, but later confirmed his priority on many results he had

not published. Gauß wanted a heptadecagon placed on his gravestone, but the carver refused, saying

it would be indistinguishable from a circle. The heptadecagon appears, however, as the shape of a

pedestal with a statue erected in his honor in his home town of Braunschweig.

(Taken from http://scienceworld.wolfram.com/biography/Gauss.html.)

[2] Leonard Euler (1707-1783) was a Swiss mathematician math-

Figure 24: L. Euler

ematician who was tutored by Johann Bernoulli. He worked at the

Petersburg Academy and Berlin Academy of Science. He had a phe-

nomenal memory, and once did a calculation in his head to settle an

argument between students whose computations differed in the fifti-

eth decimal place. Euler lost sight in his right eye in 1735, and in his

left eye in 1766. Nevertheless, aided by his phenomenal memory (and

having practiced writing on a large slate when his sight was failing

him), he continued to publish his results by dictating them. Euler

was the most prolific mathematical writer of all times finding time

(even with his 13 children) to publish over 800 papers in his lifetime.

He won the Paris Academy Prize 12 times. When asked for an ex-

planation why his memoirs flowed so easily in such huge quantities,

Euler is reported to have replied that his pencil seemed to surpass him in intelligence. Franç ois

Arago said of him "He calculated just as men breathe, as eagles sustain themselves in the air".

Euler systematized mathematics by introducing the symbols e , i , and f(x) for f a function

of x. He also made major contributions in optics, mechanics, electricity, and magnetism. He made

significant contributions to the study of differential equations. His Introducio in analysin infinitorum

(1748) provided the foundations of analysis. He showed that any complex number to a complex

power can be written as a complex number, and investigated the beta and gamma functions. He

computed the Riemann zeta function to for even numbers.

He also did important work in number theory, proving that that the divergence of the harmonic

series implied an infinite number of Primes, factoring the fifth Fermat number (thus disproving
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Fermat’s conjecture), proving Fermat’s lesser theorem, and showing that e was irrational. In 1772,

he introduced a synodic coordinates (rotating) coordinate system to the study of the three-body

problem (especially the Moon ). Had Euler pursued the matter, he would have discovered the

constant of motion later found in a different form by Jacobi and known as the Jacobi integral.

Euler also found the solution to the two fixed center of force problem for a third body. Finally,

he proved the binomial theorem was valid for any rational exponent. In a testament to Euler’s

proficiency in all branches of mathematics, the great French mathematician and celestial mechanic

Laplace told his students, "Liesez Euler, Liesez Euler, c’est notre maître à tous" ("Read Euler, read

Euler, he is our master in everything"

(Taken from http://scienceworld.wolfram.com/biography/Euler.html)

[3] Georg Friedrich Bernhard Riemann (1826-1866) was a

Figure 25: G.F.B. Riemann

German mathematician whose profound and novel approaches to

the study of geometry laid the mathematical foundation for Albert

Einstein’s theory of relativity. He also made important contribu-

tions to the theory of functions, complex analysis, and number

theory.

Riemann was born into a poor Lutheran pastor’s family, and

all his life he was a shy and introverted person. He was fortunate

to have a schoolteacher who recognized his rare mathematical

ability and lent him advanced books to read, including Adrien-

Marie Legendre’s Number Theory (1830). Riemann read the book

in a week and then claimed to know it by heart. He went on

to study mathematics at the University of Göttingen in 1846—47

and 1849—51 and at the University of Berlin (now the Humboldt

University of Berlin) in 1847—49. He then gradually worked his

way up the academic profession, through a succession of poorly paid jobs, until he became a full

professor in 1859 and gained, for the first time in his life, a measure of financial security. However, in

1862, shortly after his marriage to Elise Koch, Riemann fell seriously ill with tuberculosis. Repeated

trips to Italy failed to stem the progress of the disease, and he died in Italy in 1866.

Riemann’s visits to Italy were important for the growth of modern mathematics there; Enrico

Betti in particular took up the study of Riemannian ideas. Ill health prevented Riemann from

publishing all his work, and some of his best was published only posthumously–e.g., the first

edition of Riemann’s Gesammelte mathematische Werke (1876; “Collected Mathematical Works”),

edited by Richard Dedekind and Heinrich Weber.

Riemann’s influence was initially less than it might have been. Göttingen was a small uni-

versity, Riemann was a poor lecturer, and, to make matters worse, several of his best students

died young. His few papers are also difficult to read, but his work won the respect of some of

the best mathematicians in Germany, including his friend Dedekind and his rival in Berlin, Karl

Weierstrass. Other mathematicians were gradually drawn to his papers by their intellectual depth,

and in this way he set an agenda for conceptual thinking over ingenious calculation. This emphasis

was taken up by Felix Klein and David Hilbert, who later established Göttingen as a world centre

for mathematics research, with Carl Gauss and Riemann as its iconic figures.
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In his doctoral thesis (1851), Riemann introduced a way of generalizing the study of polynomial

equations in two real variables to the case of two complex variables. In the real case a polynomial

equation defines a curve in the plane. Because a complex variable z can be thought of as a pair

of real variables x + iy (where i = ?(?1) ), an equation involving two complex variables defines

a real surface–now known as a Riemann surface–spread out over the plane. In 1851 and in his

more widely available paper of 1857, Riemann showed how such surfaces can be classified by a

number, later called the genus, that is determined by the maximal number of closed curves that

can be drawn on the surface without splitting it into separate pieces. This is one of the first

significant uses of topology in mathematics. In 1854 Riemann presented his ideas on geometry for

the official postdoctoral qualification at Göttingen; the elderly Gauss was an examiner and was

greatly impressed. Riemann argued that the fundamental ingredients for geometry are a space of

points (called today a manifold) and a way of measuring distances along curves in the space. He

argued that the space need not be ordinary Euclidean space and that it could have any dimension

(he even contemplated spaces of infinite dimension). Nor is it necessary that the surface be drawn

in its entirety in three-dimensional space. A few years later this inspired the Italian mathematician

Eugenio Beltrami to produce just such a description of non-Euclidean geometry, the first physically

plausible alternative to Euclidean geometry. Riemann’s ideas went further and turned out to provide

the mathematical foundation for the four-dimensional geometry of space-time in Einstein’s theory

of general relativity. It seems that Riemann was led to these ideas partly by his dislike of the

concept of action at a distance in contemporary physics and by his wish to endow space with the

ability to transmit forces such as electromagnetism and gravitation.

In 1859 Riemann also introduced complex function theory into number theory. He took the zeta

function, which had been studied by many previous mathematicians because of its connection to the

prime numbers, and showed how to think of it as a complex function. The Riemann zeta function

then takes the value zero at the negative integers (the so-called trivial zeros) and also at points on a

certain line (called the critical line). Standard methods in complex function theory, due to Augustin-

Louis Cauchy in France and Riemann himself, would give much information about the distribution of

prime numbers if it could be shown that all the nontrivial zeros lie on this line–a conjecture known

as the Riemann hypothesis. All nontrivial zeros discovered thus far have been on the critical line.

In fact, infinitely many zeros have been discovered to lie on this line. Such partial results have been

enough to show that the number of prime numbers less than any number x is well approximated by

x/ln x. The Riemann hypothesis was one of the 23 problems that Hilbert challenged mathematicians

to solve in his famous 1900 address, “The Problems of Mathematics.” Over the years a growing

body of mathematical ideas have built upon the assumption that the Riemann hypothesis is true; its

proof, or disproof, would have far-reaching consequences and confer instant renown. Riemann took

a novel view of what it means for mathematical objects to exist. He sought general existence proofs,

rather than “constructive proofs” that actually produce the objects. He believed that this approach

led to conceptual clarity and prevented the mathematician from getting lost in the details, but even

some experts disagreed with such nonconstructive proofs. Riemann also studied how functions

compare with their trigonometric or Fourier series representation, which led him to refine ideas

about discontinuous functions. He showed how complex function theory illuminates the study of

minimal surfaces (surfaces of least area that span a given boundary). He was one of the first to

study differential equations involving complex variables, and his work led to a profound connection
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with group theory. He introduced new general methods in the study of partial differential equations

and applied them to produce the first major study of shock waves.

(Taken from http://www.britannica.com/)

[4] Augustin Cauchy (1789-1857) was a French mathematician

Figure 26: A. Cauchy

who wrote 789 papers, a quantity exceeded only by Euler and Cay-

ley, which brought precision and rigor to mathematics. He in-

vented the name for the determinant and systematized its study

and gave nearly modern definitions of limit, continuity, and con-

vergence. Cauchy founded complex analysis by discovering the

Cauchy-Riemann equations (although these had been previously

discovered by d’Alembert).

Cauchy also presented a mathematical treatment of optics, hypothesized that ether had the

mechanical properties of an elasticity medium, and published classical papers on wave propagation

in liquids and elastic media. After generalizing Navier’s equations for isotropic media, he formulated

one for anisotropic media. Cauchy published his first elasticity theory in 1830 and his second in

1836. Both were rather ad hoc and were riddled with problems, and Cauchy proposed a third theory

in 1839. Cauchy also studied the reflection from metals and dispersion relationships.

Cauchy extended the polyhedral formula in a paper which was criticized by Malus. His theory

of substitutions led to the theory of finite groups. He proved that the order of any subgroup is

a divisor of the order of the group. He also proved Fermat’s three triangle theorem. He refereed

a long paper by Le Verrier on the asteroid Pallas and invented techniques which allowed him to

redo Le Verrier’s calculations at record speed. He was a man of strong convictions, and a devout

Catholic. He refused to take an oath of loyalty, but also refused to leave the French Academy of

Science.

(Taken from http://scienceworld.wolfram.com/biography/Cauchy.html)

[5] Pierre Laplace (1749-1827) was a French physicist and mathe-

Figure 27: P. Laplace

matician who put the final capstone on mathematical astronomy by

summarizing and extending the work of his predecessors in his five vol-

ume Mécanique Céleste (Celestial Mechanics) (1799-1825). This work

was important because it translated the geometrical study of mechanics

used by Newton to one based on calculus, known as physical mechan-

ics. In Mécanique Céleste, Laplace proved the dynamical stability of

the solar system (with tidal friction ignored) on short time scales. On

long time scales, however, this assertion was proven false in the early

1990s. Laplace solved the libration of the Moon. In this work, he fre-

quently omitted derivations, leaving only results with the remark "il

est aisé à voia" (it is easy to see). It is said that he himself could not

always fill in the derivations later without days of work. For a revealing

quote, see the remark made by Laplace’s translator Bowditch. After

reading Mécanique céleste, Napoleon is said to have questioned Laplace on his neglect to mention

God. In stark contrast to Newton’s view on the subject, Laplace replied that he had no need for

that hypothesis.

— 62 —



MA3603 , Andreas Fring, Mathematical Methods II

Laplace also systematized and elaborated probability theory in "Essai Philosophique sur les

Probabilités" (Philosophical Essay on Probability, 1814). He was the first to publish the value

of the Gaussian integral, . He studied the Laplace transform, although Heaviside developed the

techniques fully. He proposed that the solar system had formed from a rotating solar nebula with

rings breaking off and forming the planets. He discussed this theory in Exposition de système

du monde (1796). He pointed out that sound travels adiabatically, accounting for Newton’s too

small value. Laplace formulated the mathematical theory of interparticulate forces which could be

applied to mechanical, thermal, and optical phenomena. This theory was replaced in the 1820s,

but its emphasis on a unified physical view was important.

With Lavoisier, whose caloric theory he subscribed to, he determined specific heats for many

substances using a calorimeter of his own design. Laplace borrowed the potential concept from

Lagrange, but brought it to new heights. He invented gravitational potential and showed it obeyed

Laplace’s equation in empty space.

After being appointed Minister of the Interior by Napoleon, Laplace was dismissed with the

comment that "he carried the spirit of the infinitely small into the management of affairs".

Laplace believed the universe to be completely deterministic.

(Taken from http://scienceworld.wolfram.com/biography/Laplace.html)
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