

Classtest Mathematical Methods II, MA3603 (A)

Instructions

Answer all five questions by clearly marking the box of the correct answer. Each question carries 5 marks. Some of the questions may have several correct answers, in which case the 5 marks are distributed equally over the correct answers. A wrong answer will annihilate the marks of a correct answer. Remove any notes from your workplace.

DATE: Monday 26/03/2012 at 14:00

1) Convert the following expression into the Gauss form

$$\frac{3i-\sqrt{2}+3\sqrt{3}+i\sqrt{6}}{3+i\sqrt{2}}$$

 \Box This expression can not be converted into Gauss form.

- $\Box \sqrt{3} \exp(i\pi/4)$
- $\blacksquare 2\exp(i\pi/6)$
- $\Box \sqrt{2} \exp(i\pi/3)$
- 2) f(z) = u(x, v) + iv(x, y) is an analytic function on some domain $D \in \mathbb{C}$. Which of the following statements is correct?
 - \Box The derivative of f(z) is not analytic.
 - \square When $f'(z_0) \neq const$ then f(z) preserves angles at $z_0 \in D$.
 - \blacksquare *u* and *v* are harmonic functions.
 - $\blacksquare v$ is the conjugate function of u.
 - \Box There must be a branch cut in D.
 - $\Box D$ is conformal.
- **3)** The function

$$f(z) = \left(\frac{1+z}{1-z}\right)^2$$

maps

 \Box the exterior of the a unit circle into the lower half plane.

■ the interior of a semi unit circle in the upper half plane onto the upper half plane.

- \Box the upper half plane into the interior of a unit circle.
- \Box the semi-infinite strip centred at 0 of size π into the interior of a unit circle.
- 4) The Fourier transform of the function

$$u(x) = \frac{1}{2}e^{-|x|}$$

- \Box is not defined.
- \Box is $1 + e^{-|x|}$.
- \blacksquare is $1/(1+x^2)$.
- \Box is 1 + x.
- 5) u(x) is a piecewise smooth function with exponential growth $\lambda \in \mathbb{R}^+$. We also define the functions

$$v(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$$
$$w(x) = \begin{cases} 0 & \text{for } x < 0\\ \ln x & \text{for } x \ge 0 \end{cases}$$
$$g(x) = \begin{cases} 0 & \text{for } x < 0\\ \sin \lambda x & \text{for } x \ge 0 \end{cases}$$

Classtest Mathematical Methods II, MA3603 (B)

Instructions

Answer all five questions by clearly marking the box of the correct answer. Each question carries 5 marks. Some of the questions may have several correct answers, in which case the 5 marks are distributed equally over the correct answers. A wrong answer will annihilate the marks of a correct answer. Remove any notes from your workplace.

DATE: Monday 26/03/2012 at 14:00

1) Convert the following expression into the Gauss form

$$\frac{3+\sqrt{2}+i\sqrt{3}-i\sqrt{6}}{\sqrt{3}-i\sqrt{2}}.$$

 \Box This expression can not be converted into Gauss form.

- $\blacksquare 2\exp(i\pi/6)$
- $\Box \sqrt{3} \exp(i\pi/4)$
- $\Box \sqrt{2} \exp(i\pi/3)$
- 2) f(z) = u(x, v) + iv(x, y) is an analytic function on some domain $D \in \mathbb{C}$. Which of the following statements is correct?
 - \square When $f'(z_0) \neq const$ then f(z) preserves angles at $z_0 \in D$.
 - \blacksquare *u* and *v* are harmonic functions.
 - $\Box v$ is not the conjugate function of u.
 - \blacksquare The derivative of f(z) is analytic.
 - $\Box D$ is conformal.
 - \Box There must be a branch cut in D.
- **3)** The function

$$f(z) = \frac{1}{2}\left(z + \frac{1}{z}\right)$$

maps

 \Box the interior of the a unit circle into the lower half plane.

■ the exterior of a semi unit circle in the upper half plane onto the upper half plane.

 \Box the upper half plane into the exterior of a unit circle.

 \Box the semi-infinite strip centred at 0 of size π into the interior of a unit circle.

4) The Fourier transform of the function

$$u(x) = \frac{1}{2}e^{-|x|}$$

- \Box is not defined.
- \Box is $1 + e^{-|x|}$.
- \blacksquare is $1/(1+x^2)$.
- \Box is 1 + x.
- 5) u(x) is a piecewise smooth function with exponential growth $\alpha \in \mathbb{R}^+$. We also define the functions

$$v(x) = \begin{cases} 0 & \text{for } x < 0\\ 2 & \text{for } x \ge 0 \end{cases}$$
$$w(x) = \begin{cases} 0 & \text{for } x < 0\\ 1/x & \text{for } x \ge 0 \end{cases}$$
$$g(x) = \begin{cases} 0 & \text{for } x < 0\\ \cos \alpha x & \text{for } x \ge 0 \end{cases}$$

$$\Box \mathcal{L}(u \star w)(x) = (\mathcal{L}u)(x)(\mathcal{L}w)(x) \text{ for } x > \alpha.$$

$$\Box \mathcal{L}(g \star u)(x) = (\mathcal{L}g)(x)(\mathcal{L}u)(x) \text{ for } x > 0.$$

$$\blacksquare \mathcal{L}(u \star v)(x) = (\mathcal{L}u)(x)(\mathcal{L}v)(x) \text{ for } x > \alpha.$$

$$\blacksquare \mathcal{L}(v \star g)(x) = (\mathcal{L}v)(x)(\mathcal{L}g)(x) \text{ for } x > 0.$$

$$\Box \mathcal{L}(w \star g)(x) = (\mathcal{L}w)(x)(\mathcal{L}g)(x) \text{ for } x > \alpha.$$

Classtest Mathematical Methods II, MA3603 (C)

Instructions

Answer all five questions by clearly marking the box of the correct answer. Each question carries 5 marks. Some of the questions may have several correct answers, in which case the 5 marks are distributed equally over the correct answers. A wrong answer will annihilate the marks of a correct answer. Remove any notes from your workplace.

DATE: Monday 26/03/2012 at 14:00

1) Convert the following expression into the Gauss form

$$\frac{4i+\sqrt{2}+4\sqrt{3}-i\sqrt{6}}{4-i\sqrt{2}}$$

 \Box This expression can not be converted into Gauss form.

- $\Box \sqrt{3} \exp(i\pi/4)$
- $\Box \sqrt{2} \exp(i\pi/3)$
- $\blacksquare 2\exp(i\pi/6)$
- 2) f(z) = u(x, v) + iv(x, y) is an analytic function on some domain $D \in \mathbb{C}$. Which of the following statements is correct?
 - \Box The derivative of f(z) is not analytic.
 - $\blacksquare \text{ When } f'(z_0) \neq 0 \text{ then } f(z) \text{ preserves angles at } z_0 \in D.$
 - $\blacksquare v$ is the conjugate function of u.
 - $\Box u$ and v are not harmonic functions.
 - \Box There must be a branch cut in D.
 - $\Box D$ is conformal.
- **3)** The function

$$f(z) = \left(\frac{1+z}{1-z}\right)^2$$

maps

 \Box the exterior of the a unit circle into the lower half plane.

 \Box the upper half plane into the interior of a unit circle.

 \blacksquare the interior of a semi unit circle in the upper half plane onto the upper half plane.

 \Box the semi-infinite strip centred at 0 of size π into the interior of a unit circle.

4) The Fourier transform of the function

$$u(x) = \frac{1}{2}e^{-|x|}$$

 \Box is not defined.

$$\blacksquare$$
 is $1/(1+x^2)$.

 \Box is 1 + x.

- \Box is $1 + e^{-|x|}$.
- 5) u(x) is a piecewise smooth function with exponential growth $\lambda \in \mathbb{R}^+$. We also define the functions

$$v(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$$
$$w(x) = \begin{cases} 0 & \text{for } x < 0\\ 1/x & \text{for } x \ge 0 \end{cases}$$
$$g(x) = \begin{cases} 0 & \text{for } x < 0\\ \sin \lambda x & \text{for } x \ge 0 \end{cases}$$

$$\Box \mathcal{L}(u \star w)(x) = (\mathcal{L}u)(x)(\mathcal{L}w)(x) \text{ for } x > \lambda.$$

$$\Box \mathcal{L}(g \star u)(x) = (\mathcal{L}g)(x)(\mathcal{L}u)(x) \text{ for } x > 0.$$

$$\blacksquare \mathcal{L}(u \star v)(x) = (\mathcal{L}u)(x)(\mathcal{L}v)(x) \text{ for } x > \lambda.$$

$$\Box \mathcal{L}(w \star g)(x) = (\mathcal{L}w)(x)(\mathcal{L}g)(x) \text{ for } x > \lambda.$$

$$\blacksquare \mathcal{L}(v \star g)(x) = (\mathcal{L}v)(x)(\mathcal{L}g)(x) \text{ for } x > 0.$$

Classtest Mathematical Methods II, MA3603 (D)

Instructions

Answer all five questions by clearly marking the box of the correct answer. Each question carries 5 marks. Some of the questions may have several correct answers, in which case the 5 marks are distributed equally over the correct answers. A wrong answer will annihilate the marks of a correct answer. Remove any notes from your workplace.

DATE: Monday 26/03/2012 at 14:00

1) Convert the following expression into the Gauss form

$$\frac{2i+\sqrt{2}+2\sqrt{3}-i\sqrt{6}}{2-i\sqrt{2}}.$$

- \Box This expression can not be converted into Gauss form.
- $\Box \sqrt{3} \exp(i\pi/4)$
- $\Box \sqrt{2} \exp(i\pi/3)$
- $\blacksquare 2\exp(i\pi/6)$
- 2) f(z) = u(x, v) + iv(x, y) is an analytic function on some domain $D \in \mathbb{C}$. Which of the following statements is correct?
 - When $f'(z_0) \neq 0$ then f(z) preserves angles at $z_0 \in D$.
 - $\Box u$ and v are not harmonic functions.
 - $\Box v$ is not the conjugate function of u.
 - \blacksquare The derivative of f(z) is analytic.
 - $\Box D$ is conformal.
 - \Box There must be a branch cut in D.
- **3)** The function

$$f(z) = \frac{1}{2}\left(z + \frac{1}{z}\right)$$

maps

 \Box the interior of the a unit circle into the lower half plane.

 \Box the upper half plane into the exterior of a unit circle.

■ the exterior of a semi unit circle in the upper half plane onto the upper half plane.

 \Box the semi-infinite strip centred at 0 of size π into the interior of a unit circle.

4) The Fourier transform of the function

$$u(x) = \frac{1}{2}e^{-|x|}$$

 \Box is not defined.

$$\Box$$
 is $1 + e^{-|x|}$.

 \Box is 1 + x.

- \blacksquare is $1/(1+x^2)$.
- 5) u(x) is a piecewise smooth function with exponential growth $\alpha \in \mathbb{R}^+$. We also define the functions

$$v(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$$
$$w(x) = \begin{cases} 0 & \text{for } x < 0\\ 2/x & \text{for } x \ge 0 \end{cases}$$
$$g(x) = \begin{cases} 0 & \text{for } x < 0\\ \sin \alpha x & \text{for } x \ge 0 \end{cases}$$